Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, we present and review the most recent computational advances in the BERTHA code. BERTHA can be regarded as the state of the art in fully relativistic four-component Dirac-Kohn-Sham (DKS) software. Thanks to the implementation of various parallelization and memory open-ended distribution schemes in combination with efficient "density fitting" algorithms, it greatly reduces the computational burden of four-component DKS calculations. We also report the newly developed OpenMP version of the code, that, together with the berthmod Python module, provides a significant leap forward in terms of usability and applicability of the BERTHA software. Some applications of the recently developed natural orbitals for chemical valence/charge displacement bonding analysis and the real-time time dependent DKS implementation are also reported.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0002831DOI Listing

Publication Analysis

Top Keywords

four-component dirac-kohn-sham
8
bertha
4
bertha implementation
4
implementation four-component
4
dirac-kohn-sham relativistic
4
relativistic framework
4
framework paper
4
paper review
4
review computational
4
computational advances
4

Similar Publications

This study assesses density functional theory (DFT) methods for their accuracy in calculating hyperfine coupling constants (HFCCs) of heavy heteroatom radicals with heteroatoms including Sb, Bi, In, Tl, and Sn. Given the essential role of electron paramagnetic resonance spectroscopy in characterization of these species, it is crucial that theoretical models can predict HFCCs accurately for heavy elements. This work presents a computational approach that addresses crucial factors: selection of basis set, hybrid exchange-correlation functional, higher Hartree-Fock (HF) exchange, and the Gaussian description of nuclear charge.

View Article and Find Full Text PDF

In this work, we study the chemical bond in molecules containing heavy and super-heavy elements according to the current state-of-the-art bonding models. An Energy Decomposition Analysis in combination with Natural Orbital for Chemical Valence (EDA-NOCV) within the relativistic four-component Dirac-Kohn-Sham (DKS) framework is employed, which allows to successfully include the spin-orbit coupling (SOC) effects on the chemical bond description. Simple halogen-bonded adducts ClX⋯L (X=At, Ts; L=NH, Br, HO, CO) of astatine and tennessine have been selected to assess a trend on descending along a group, while modulating the ClX⋯L bond features through the different electronic nature of the ligand L.

View Article and Find Full Text PDF

Treating 195Pt nuclear magnetic resonance parameters in solution remains a considerable challenge from a quantum chemistry point of view, requiring a high level of theory that simultaneously takes into account the relativistic effects, the dynamic treatment of the solvent-solute system, and the dynamic electron correlation. A combination of Car-Parrinello molecular dynamics (CPMD) and relativistic calculations based on two-component zeroth order regular approximation spin-orbit Kohn-Sham (2c-ZKS) and four-component Dirac-Kohn-Sham (4c-DKS) Hamiltonians is performed to address the solvent effect (water) on the conformational changes and JPtPt1 coupling. A series of bridged PtIII dinuclear complexes [L1-Pt2(NH3)4(Am)2-L2]n+ (Am = α-pyrrolidonate and pivalamidate; L = H2O, Cl-, and Br-) are studied.

View Article and Find Full Text PDF

Relativistic DFT Calculations of Cadmium and Selenium Solid-State NMR Spectra of CdSe Nanocrystal Surfaces.

ACS Omega

November 2023

U.S. Department of Energy Ames National Laboratory, Ames, Iowa 50011. United States.

Solid-state NMR spectra have been used to probe the structure of CdSe nanocrystals and propose detailed models of their surface structures. Density functional theory (DFT)-optimized cluster models that represent probable molecular structures of carboxylate-coordinated surface sites have been proposed. However, to the best of our knowledge, Cd and Se chemical shifts have not been calculated for these surface models.

View Article and Find Full Text PDF

Frozen-Density Embedding for Including Environmental Effects in the Dirac-Kohn-Sham Theory: An Implementation Based on Density Fitting and Prototyping Techniques.

J Chem Theory Comput

October 2022

Istituto di Scienze e Tecnologie Chimiche (SCITEC), Consiglio Nazionale delle Ricerche c/o Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy.

Frozen density embedding (FDE) represents an embedding scheme in which environmental effects are included from first-principles calculations by considering the surrounding system explicitly by means of its electron density. In the present paper, we extend the full four-component relativistic Dirac-Kohn-Sham (DKS) method, as implemented in the BERTHA code, to include environmental and confinement effects with the FDE scheme (DKS-in-DFT FDE). The implementation, based on the auxiliary density fitting techniques, has been enormously facilitated by BERTHA's python API (PyBERTHA), which facilitates the interoperability with other FDE implementations available through the PyADF framework.

View Article and Find Full Text PDF