A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Stochastic models coupling gene expression and partitioning in cell division in Escherichia coli. | LitMetric

Stochastic models coupling gene expression and partitioning in cell division in Escherichia coli.

Biosystems

Laboratory of Biosystem Dynamics, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland. Electronic address:

Published: June 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Regulation of future RNA and protein numbers is a key process by which cells continuously best fit the environment. In bacteria, RNA and proteins exist in small numbers and their regulatory processes are stochastic. Consequently, there is cell-to-cell variability in these numbers, even between sister cells. Traditionally, the two most studied sources of this variability are gene expression and RNA and protein degradation, with evidence suggesting that the latter is subject to little regulation, when compared to the former. However, time-lapse microscopy and single molecule fluorescent tagging have produced evidence that cell division can also be a significant source of variability due to asymmetries in the partitioning of RNA and proteins. Relevantly, the impact of this noise differs from noise in production and degradation since, unlike these, it is not continuous. Rather, it occurs at specific time points, at which moment it can introduce major fluctuations. Several models have now been proposed that integrate noise from cell division, in addition to noise in gene expression, to mimic the dynamics of RNA and protein numbers of cell lineages. This is expected to be particularly relevant in genetic circuits, where significant fluctuations in one component protein, at specific time moments, are expected to perturb near-equilibrium states of the circuits, which can have long-lasting consequences. Here we review stochastic models coupling these processes in Escherichia coli, from single genes to small circuits.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biosystems.2020.104154DOI Listing

Publication Analysis

Top Keywords

gene expression
12
cell division
12
rna protein
12
stochastic models
8
models coupling
8
escherichia coli
8
protein numbers
8
rna proteins
8
specific time
8
rna
5

Similar Publications