A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-temporal assessment of grassland α- and β-diversity using hyperspectral imaging. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While more and more studies are exploring the application of remote sensing in assessing biodiversity for different ecosystems, most consider biodiversity at one point in time. Using several remote-sensing-based metrics, we asked how well remote sensing can detect biodiversity (both α- and β-diversity) in a prairie grassland across time using airborne hyperspectral data collected in two successive years (2017 and 2018) and at different periods in the growing season (2018). The ability to detect biodiversity using "spectral diversity" and "spectral species" types indeed varied significantly over a 2-yr timespan. Toward the end of the growing season in 2018, the relationship between field- and remote-sensing-based α- and β-diversity weakened compared to data collected from the same season in the previous year. This contrasting pattern between the two years was likely influenced by prescribed fire, altered weather, and the resulting shifting species composition and phenology. These findings indicate that direct detection of α- and β-diversity in grasslands should be multi-temporal when possible and should consider the effect of disturbances, climate variables, and phenology. We demonstrate an essential role for airborne platforms in developing a global biodiversity monitoring system involving forthcoming space-borne hyperspectral sensors.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eap.2145DOI Listing

Publication Analysis

Top Keywords

α- β-diversity
16
remote sensing
8
detect biodiversity
8
data collected
8
growing season
8
season 2018
8
biodiversity
5
multi-temporal assessment
4
assessment grassland
4
α-
4

Similar Publications