A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

TNFAIP1 Mediates Formaldehyde-Induced Neurotoxicity by Inhibiting the Akt/CREB Pathway in N2a Cells. | LitMetric

TNFAIP1 Mediates Formaldehyde-Induced Neurotoxicity by Inhibiting the Akt/CREB Pathway in N2a Cells.

Neurotox Res

State Key Laboratory of Developmental Biology of Freshwater Fish, School of Life Sciences, Hunan Normal University, Changsha, 410081, Hunan, China.

Published: June 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Formaldehyde (FA) is a common air pollutant. Exposure to exogenous FA can cause damage to the nervous system, such as learning and memory impairment, balance dysfunction, and sleep disorders. Excessive production of endogenous FA also causes memory impairment and is thought to be associated with Alzheimer's disease (AD). Tumor necrosis factor alpha-induced protein 1 (TNFAIP1) plays a crucial role in neurodevelopment and neurological diseases. However, the role of TNFAIP1 in FA-induced neurotoxicity is unclear. Herein, using a mouse neuroblastoma cell line (N2a cells), we explored the mechanism of TNFAIP1 in FA-induced neurotoxicity, the involvement of the Akt/CREB signaling pathway, and how the expression of TNFAIP1 is regulated by FA. We found that exposure to 100 μM or 200 μM FA for 24 h led to decreased cell viability, increased cell apoptosis and neurite retraction, increased reactive oxygen species (ROS) levels, upregulated protein expression of TNFAIP1 and decreased the levels of phosphorylated Akt and CREB in the Akt/CREB pathway. Knockdown of TNFAIP1 using a TNFAIP1 small interfering RNA (siRNA) expression vector prevented FA from inhibiting the Akt/CREB pathway, thus reducing cell apoptosis and restoring cell viability and neurite outgrowth. Clearance of ROS by vitamin E (Vit E) repressed the FA-mediated upregulation of TNFAIP1 expression. These results suggest that FA increases the expression of TNFAIP1 by inducing oxidative stress and that upregulated TNFAIP1 then inhibits the Akt/CREB pathway, consequently leading to cell apoptosis and neurite retraction. Therefore, TNFAIP1 is a potential target for alleviating FA-induced neurotoxicity and related neurological disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12640-020-00199-9DOI Listing

Publication Analysis

Top Keywords

akt/creb pathway
16
tnfaip1
12
fa-induced neurotoxicity
12
expression tnfaip1
12
cell apoptosis
12
inhibiting akt/creb
8
n2a cells
8
memory impairment
8
tnfaip1 fa-induced
8
cell viability
8

Similar Publications