A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimization of Hydroxypropyl Methylcellulose and Dextrin in Development of Dried Nanosuspension for Poorly Water-Soluble Drug. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The purpose of this study is to identify the effects of a stabilizer and matrix former in the development of a celecoxib dried nanosuspension (DNS) for high dissolution rate and drug loading. Tween 80 and Hydroxypropyl Methylcellulose (HPMC) were used as stabilizers in the bead-milling process and dextrin was used as the matrix former in the spray-drying. Various nanosuspensions (NS) were prepared by varying the ratio of HPMC and dextrin, and the physicochemical properties of each formulation were evaluated for particle size, morphology, drug loading, crystallinity, redispersibility, physical stability and dissolution rate. HPMC efficiently stabilized the NS system and reduced the particle size of NS. The mean particle size of the NS with 0.5% HPMC (w/v) was the smallest (248 nm) of all formulations. Dextrin has been shown to inhibit the increase of particle size efficiently, which is known to occur frequently when NS is being solidified. As the dextrin increased in DNS, the dissolution rates of reconstituted NS were significantly improved. However, it was confirmed that more than the necessary amount of dextrin in DNS reduced the dissolution and drug loading. The dissolution of celecoxib in DNS prepared at the ratio (drug:dextrin, 1:2.5) was almost the highest. The dissolution of optimal formulation was 95.8% at 120 min, which was 2.0-fold higher than that of NS dried without dextrin. In conclusion, these results suggest that the formulation based on Tween 80, HPMC and dextrin may be an effective option for DNS to enhance its dissolution and in vivo oral absorption.

Download full-text PDF

Source
http://dx.doi.org/10.1166/jnn.2020.17659DOI Listing

Publication Analysis

Top Keywords

particle size
16
drug loading
12
hydroxypropyl methylcellulose
8
dextrin
8
dried nanosuspension
8
dissolution rate
8
hpmc dextrin
8
dissolution
7
dns
5
hpmc
5

Similar Publications