Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
C-type lectins bind to carbohydrate structures in a Ca-dependent manner. Some transmembrane forms of lectins act as innate immune receptors and induce signal transduction pathways in macrophages and dendritic cells (DCs). Expressing these receptors in cells bearing a reporter gene is a useful tool to investigate ligand binding and recognition. However, it cannot be used to quantify the precise affinity of the interaction, and the involvement of other proteins remains a possibility. Direct binding between a receptor and its ligand can be investigated using an immunoglobulin receptor (Ig)-fused soluble protein. This binding can be assessed using enzyme-linked immunosorbent assays and flow cytometry, and the fusion protein may also be used in a glycan array. In this chapter, we explain the generation of Ig fusion proteins and subsequent binding assays using these proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-0430-4_12 | DOI Listing |