Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center.

Biochim Biophys Acta Bioenerg

Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China. Electronic address:

Published: August 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Precise folding of photosynthetic proteins and organization of multicomponent assemblies to form functional entities are fundamental to efficient photosynthetic electron transfer. The bacteriochlorophyll b-producing purple bacterium Blastochloris viridis possesses a simplified photosynthetic apparatus. The light-harvesting (LH) antenna complex surrounds the photosynthetic reaction center (RC) to form the RC-LH1 complex. A non-membranous tetraheme cytochrome (4Hcyt) subunit is anchored at the periplasmic surface of the RC, functioning as the electron donor to transfer electrons from mobile electron carriers to the RC. Here, we use atomic force microscopy (AFM) and single-molecule force spectroscopy (SMFS) to probe the long-range organization of the photosynthetic apparatus from Blc. viridis and the unfolding pathway of the 4Hcyt subunit in its native supramolecular assembly with its functional partners. AFM images reveal that the RC-LH1 complexes are densely organized in the photosynthetic membranes, with restricted lateral protein diffusion. Unfolding of the 4Hcyt subunit represents a multi-step process and the unfolding forces of the 4Hcyt α-helices are approximately 121 picoNewtons. Pulling of 4Hcyt could also result in the unfolding of the RC L subunit that binds with the N-terminus of 4Hcyt, suggesting strong interactions between RC subunits. This study provides new insights into the protein folding and interactions of photosynthetic multicomponent complexes, which are essential for their structural and functional integrity to conduct photosynthetic electron flow.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7322399PMC
http://dx.doi.org/10.1016/j.bbabio.2020.148204DOI Listing

Publication Analysis

Top Keywords

4hcyt subunit
12
photosynthetic
9
unfolding pathway
8
photosynthetic reaction
8
reaction center
8
photosynthetic electron
8
photosynthetic apparatus
8
4hcyt
6
unfolding
5
subunit
5

Similar Publications

Unfolding pathway and intermolecular interactions of the cytochrome subunit in the bacterial photosynthetic reaction center.

Biochim Biophys Acta Bioenerg

August 2020

Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China. Electronic address:

Precise folding of photosynthetic proteins and organization of multicomponent assemblies to form functional entities are fundamental to efficient photosynthetic electron transfer. The bacteriochlorophyll b-producing purple bacterium Blastochloris viridis possesses a simplified photosynthetic apparatus. The light-harvesting (LH) antenna complex surrounds the photosynthetic reaction center (RC) to form the RC-LH1 complex.

View Article and Find Full Text PDF

In photosynthesis, highly organized multiprotein assemblies convert sunlight into biochemical energy with high efficiency. A challenge in structural biology is to analyze such supramolecular complexes in native membranes. Atomic force microscopy (AFM) with high lateral resolution, high signal-to-noise ratio, and the possibility to nanodissect biological samples is a unique tool to investigate multiprotein complexes at molecular resolution in situ.

View Article and Find Full Text PDF