Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: Diffuse intrinsic pontine glioma (DIPG) is a highly lethal malignancy that occurs predominantly in children. DIPG is inoperable and post-diagnosis survival is less than 1 year, as conventional chemotherapy is ineffective. The intact blood-brain barrier (BBB) blocks drugs from entering the brain. Convection-enhanced delivery (CED) is a direct infusion technique delivering drugs to the brain, but it suffers from rapid drug clearance. Our goal is to overcome the delivery barrier via CED and maintain a therapeutic concentration at the glioma site with a payload-adjustable peptide nanofiber precursor (NFP) that displays a prolonged retention property as a drug carrier.
Methods: The post-CED retention of 89Zr-NFP was determined in real time using PET/CT imaging. Emtansine (DM1), a microtubule inhibitor, was conjugated to NFP. The cytotoxicity of the resulting DM1-NFP was tested against patient-derived DIPG cell lines. The therapeutic efficacy was evaluated in animals bearing orthotopic DIPG, according to glioma growth (measured using bioluminescence imaging) and the long-term survival.
Results: DM1-NFP demonstrated potency against multiple glioma cell lines. The half-maximal inhibitory concentration values were in the nanomolar range. NFP remained at the infusion site (pons) for weeks, with a clearance half-life of 60 days. DM1-NFP inhibited glioma progression in animals, and offered a survival benefit (median survival of 62 days) compared with the untreated controls (28 days) and DM1-treated animal group (26 days).
Conclusions: CED, in combination with DM1-NFP, complementarily functions to bypass the BBB, prolong drug retention at the fusion site, and maintain an effective therapeutic effect against DIPG to improve treatment outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566426 | PMC |
http://dx.doi.org/10.1093/neuonc/noaa101 | DOI Listing |