A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

High Surface Area Nanoporous Graphitic Carbon Materials Derived from Lapsi Seed with Enhanced Supercapacitance. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanoporous activated carbon materials derived from agro-wastes could be suitable low-cost electrode materials for high-rate performance electrochemical supercapacitors. Here we report high surface area nanoporous carbon materials derived from Lapsi seed agro-waste prepared by zinc chloride (ZnCl) activation at 700 °C. Powder X-ray diffraction (pXRD) and Raman scattering confirmed the amorphous structure of the resulting carboniferous materials, which also incorporate oxygen-containing functional groups as confirmed by Fourier transform infrared (FTIR) spectroscopy. Scanning and transmission electron microscopy (SEM and TEM) analyses revealed the granular, nanoporous structures of the materials. High-resolution TEM (HR-TEM) confirmed a graphitic carbon structure containing interconnected mesopores. Surface areas and pore volumes of the materials were found, respectively, in the ranges from 931 to 2272 m g and 0.998 to 2.845 cm g, and are thus superior to commercially available activated carbons. High surface areas, large pore volumes and interconnected mesopore structures of these Lapsi seed-derived nanoporous carbon materials lead to their excellent electrochemical supercapacitance performance in aqueous electrolyte (1 M HSO) with a maximum specific capacitance of 284 F g at a current density of 1 A g. Furthermore, the electrodes showed high-rate capability sustaining 67.7% capacity retention even at high current density of 20 A g with excellent cycle stability achieving 99% capacitance retention even after 10,000 charge-discharge cycles demonstrating the potential of Lapsi seed derived nanoporous carbons as suitable electrode materials in high-performance supercapacitor devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221556PMC
http://dx.doi.org/10.3390/nano10040728DOI Listing

Publication Analysis

Top Keywords

carbon materials
16
high surface
12
materials derived
12
lapsi seed
12
materials
9
surface area
8
area nanoporous
8
graphitic carbon
8
derived lapsi
8
electrode materials
8

Similar Publications