98%
921
2 minutes
20
We explore the ground-state physics of two-dimensional spin-1/2 U(1) quantum link models, one of the simplest nontrivial lattice gauge theories with fermionic matter within experimental reach for quantum simulations. Whereas in the large mass limit we observe Neél-like vortex-antivortex and striped crystalline phases, for small masses there is a transition from the striped phases into a disordered phase whose properties resemble those at the Rokhsar-Kivelson point of the quantum dimer model. This phase is characterized on ladders by boundary Haldane-like properties, such as vanishing parity and finite string ordering. Moreover, from studies of the string tension between gauge charges, we find that, whereas the striped phases are confined, the novel disordered phase present clear indications of being deconfined. Our results open exciting perspectives of studying highly nontrivial physics in quantum simulators, such as spin-liquid behavior and confinement-deconfinement transitions, without the need of explicitly engineering plaquette terms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.123601 | DOI Listing |
Curr Opin Struct Biol
September 2025
Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA. Electronic address:
Our previously proposed Ras dimerization model is consistent with recent details observed by NMR in that Raf activation is centered on the Ras/Raf dimer, distinct from one in which Ras activates Raf as a monomer with the Raf cysteine rich domain inserted in the membrane. We review mechanistic understanding of Raf activation within nanoclusters of Ras on the membrane, with a shift to dimers upon binding Raf. This sets the stage for a signaling platform composed of Ras/Raf and Galectin dimers that facilitates the release of Raf autoinhibition and folding of the Raf intrinsically disordered region between the Ras-binding domains and the kinase bound to 14-3-3 and MEK.
View Article and Find Full Text PDFAdv Mater
September 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China.
Van der Waals (vdW) layered materials have gained significant attention owing to their distinctive structure and unique properties. The weak interlayer bonding in vdW layered materials enables guest atom intercalation, allowing precise tuning of their physical and chemical properties. In this work, a ternary compound, NiInSe (x = 0-0.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Functional Materials and Devices for Special Environments Conditions, Xinjiang Key Laboratory of Electronic Information Materials and Devices, Xinjiang Technical Institute of Physics and Chemistry of CAS, Urumqi, 830011, P. R. China.
Owing to its wide bandgap, LaAlO has garnered extensive attention in the field of high-temperature negative temperature coefficient (NTC) thermistors. However, its poor thermal stability and excessively high B value limit the working temperature range. In this work, introducing O 2p and Ni 3d hybrid energy levels into the bandgap is proposed via Ni doping and inducing stacking faults in the crystal structure to narrow the bandgap and enhance aging performance.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, 201306, China; International Resea
Phase separation has been discovered as a new form of regulation in innate immunity. Here, we found that IL6Ra in teleost fish has a unique intrinsic disordered region (IDR) in its amino acid sequence, distinguishing it from the IL6Ra of higher vertebrates. This unique feature endows IL6Ra with the ability to undergo liquid-liquid phase separation, enabling the organism to swiftly initiate an immune response at the early stages of viral infection.
View Article and Find Full Text PDFEpilepsia
September 2025
Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, Nebraska, USA.
The rate of sudden unexpected death in epilepsy (SUDEP) is ~1 per 1000 patients each year. Terminal events reportedly involve repeated and prolonged apnea, suggesting a failure to autoresuscitate. To better understand the mechanisms and identify novel therapeutics, standardized tests to screen for autoresuscitation efficacy are needed in preclinical SUDEP.
View Article and Find Full Text PDF