98%
921
2 minutes
20
X-linked intellectual disability (XLID) is a genetically heterogeneous condition involving more than 100 genes. To date, 35 pathogenic variants have been reported in the lysine specific demethylase 5C (KDM5C) gene. KDM5C variants are one of the major causes of moderate to severe XLID. Affected males present with short stature, distinctive facial features, behavioral disorders, epilepsy, and spasticity. For most of these variants, related female carriers have been reported, but phenotypic descriptions were poor. Here, we present clinical and molecular features of 19 females carrying 10 novel heterozygous variants affecting KDM5C function, including five probands with de novo variants. Four heterozygous females were asymptomatic. All affected individuals presented with learning disabilities or ID (mostly moderate), and four also had a language impairment mainly affecting expression. Behavioral disturbances were frequent, and endocrine disorders were more frequent in females. In conclusion, our findings provide evidence of the role of KDM5C in ID in females highlighting the increasing implication of XLID genes in females, even in sporadic affected individuals. Disease expression of XLID in females should be taken into consideration for genetic counseling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cge.13755 | DOI Listing |
J Environ Pathol Toxicol Oncol
January 2025
Department of Biostatistics, Medical Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey.
Prostate cancer and inflammation mechanism are closely related because chronic inflammation causes inflammatory cells to infiltrate into prostatic atrophy areas and proliferative inflammatory atrophy is accepted as the initiator of prostate cancer. The study included 90 patients (28 patients with benign prostatic hyperplasia (BPH), 35 patients with localized prostate cancer (LPCa), and 27 patients with metastatic prostate cancer (MPCa) and 90 healthy controls. Blood samples from 90 patients and 90 healthy people were used to isolate genomic DNA.
View Article and Find Full Text PDFCrit Rev Ther Drug Carrier Syst
January 2025
The emergence of messenger ribonucleic acid (mRNA) vaccines as an alternative platform to traditional vaccines has been accompanied by advances in nanobiotechnology, which have improved the stability and delivery of these vaccines through novel nanoparticles (NPs). Specifically, the development of NPs for mRNA delivery has facilitated the loading, protection and release of mRNA in the biological microenvironment, leading to the stimulation of mRNA translation for effective intervention strategies. Intriguingly, two mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), have been permitted for emergency usage authorization to prevent COVID-19 infection by USFDA.
View Article and Find Full Text PDFJ Therm Biol
September 2025
Hainan Key Laboratory of Tropical Animal Reproduction & Breeding and Epidemic Disease Research, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China. Electronic address:
In light of the challenges posed by global climate change, the environmental adaptability of organisms is becoming increasingly important. The Wuzhishan (WZS) pig, tolerant to high heat and humidity, is an ideal model for genomic study. By characterizing its genome and assessing its genetic diversity and runs of homozygosity (ROH), we can gain insights into its current conservation status and genomic architecture.
View Article and Find Full Text PDFPostgrad Med J
September 2025
Department of Basic Medicine, Shantou University Medical College, 22 Xinling Road, Jinping District, Shantou, Guangdong, 515041, China.
Background: Coronary atherosclerosis is a leading cause of cardiovascular disease and death worldwide. Despite progress in understanding its pathogenesis, the roles of circulating inflammatory proteins and plasma metabolites are complex and not fully elucidated. Existing Mendelian randomization (MR) studies often target isolated biomarkers, lacking comprehensive and mechanistic insights.
View Article and Find Full Text PDFChemMedChem
September 2025
Faculty of Pharmacy, PHENIKAA University, Hanoi, 12116, Vietnam.
Antimicrobial peptides (AMPs) have emerged as promising candidates for combating drug-resistant pathogens and certain cancer types. However, their therapeutic applications are often limited by undesired hemolytic activity, while many AMPs exhibit only moderate potency. Herein, the "helical wheel rotation" strategy as a simple, cost-effective, and modular approach to optimize the pharmacological properties of amphipathic α-helical AMPs without altering their amino acid composition is explored.
View Article and Find Full Text PDF