98%
921
2 minutes
20
The generation of stable clones for biomolecule production is a common but lengthy and labor-intensive process. For complex molecules, such as viruses or virus-like particles (VLPs), the timeline becomes even more cumbersome. Thus, in the early stages of development, transient production methods serve as a reasonable alternative to stable clone construction. In this work, an investigation of a polyethylenimine- (PEI-) based transfection method for the transient production of Chikungunya (Chik) VLPs, a vaccine candidate molecule, was undertaken. This effort focuses on tracking cell population responses during transfection, understanding how process changes affect these responses, and monitoring patterns in cell performance over the culture duration. Plasmid labeling and VLP staining were employed to comprehensively track cells via flow cytometry and to draw correlations between plasmid DNA (pDNA) uptake and the resulting VLP expression. The method detected high transfection efficiency (≥97%) in all samples tested and demonstrated the capability to track kinetics of plasmid-cell binding. With varied transfection cell concentrations, the pDNA binding kinetics are altered and saturation binding is observed in the lowest cell concentration sample tested in less than 3 hours of incubation. Interestingly, in all samples, the flow cytometry analysis of relative pDNA amount versus VLP expression staining showed that cells which contained fewer pDNA complexes resulted in the highest levels of VLP stain. Finally, to determine the potential breadth of our observations, we compared daily expression patterns of ChikVLP with a reporter, monomeric GFP molecule. The similarities detected suggest the interpretations presented here to likely be more broadly informative and applicable to PEI-based transient production of additional biological products as well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7094759 | PMC |
http://dx.doi.org/10.34133/2020/1387402 | DOI Listing |
Oncogene
September 2025
Department of Molecular Medicine and Biochemistry, Akita University Graduate School of Medicine, Akita, Japan.
Forkhead-box-protein P3 (FOXP3) is a key transcription factor in T regulatory cells (Tregs). However, its expression and significance in non-immune stromal cells in the tumor microenvironment remain unclear. Here, we demonstrated FOXP3 expression in stromal fibroblasts of mouse and human gastrointestinal tumors.
View Article and Find Full Text PDFClin Breast Cancer
August 2025
Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China. Electronic address:
Background: Triple-negative breast cancer (TNBC) carries a substantial risk of recurrence and metastasis, posing significant threats to patients' health and quality of life. Centrosomal protein 55 (CEP55) has been demonstrated to exhibit elevated expression levels in TNBC. However, its molecular regulatory mechanism in TNBC remains unclear.
View Article and Find Full Text PDFJ Immunol
September 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Qidong-Fudan Innovative Institution of Medical Sciences, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
Hepatitis B virus (HBV) exclusively infects hepatocytes and produces large quantities of subviral particles containing its surface antigen (HBsAg). T cells play a central role in controlling HBV infection but can also mediate liver injury and contribute to disease progression. However, the mechanisms that regulate T-cell responses to eliminate the virus without causing immunopathology during acute HBV infection remain poorly defined.
View Article and Find Full Text PDFExp Cell Res
September 2025
The Department of Hematology, The First Affiliated Hospital of Hainan Medical University, No.31 Longhua Road, Haikou City, Hainan Province, 570000, P.R. China. Electronic address:
Background: Nasopharyngeal carcinoma (NPC) is a kind of tumor disease with high malignant degree. CREPT expression was elevated abnormally in multi-cancers. However, the role and regulatory mechanism of CREPT in NPC remains unknown.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Res
September 2025
Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland College Park, College Park, MD, 20742, USA. Electronic address:
Translocon-associated protein subunit beta (TRAPβ), also known as signal sequence receptor 2 (SSR2) serves as an auxiliary protein facilitating co-translational translocation in the endoplasmic reticulum (ER); however, its role in colorectal cancer is unknown to date. The objectives of the current study are to examine if TRAPβ/SSR2 knockdown affects the cell proliferation and to elucidate mechanisms by which TRAPβ/SSR2 regulates proliferation of human colorectal cancer. We silenced TRAPβ/SSR2 transiently and stably in human colorectal cancer cell lines and analyzed cell proliferative properties.
View Article and Find Full Text PDF