Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Since mitochondrial dysfunction was discovered to be the underlying cause of several severe diseases, fluorescent probes with excellent optical properties for visualising and monitoring the mitochondrial membrane potential (MMP) (a parameter of mitochondrial vitality) have been in high demand. Herein, we present novel pyrene-based dyes exhibiting remarkably large two-photon absorption around 900 nm and bright red emission around 620 nm (two-photon brightness (Φσ) = 425-525 GM), with selective localisation to the mitochondria or nucleus in response to changes in the MMP, providing several advantages over traditional MMP-monitoring probes such as Rhodamine 123 (Φσ = 64 GM). The intracellular behavior of the new dyes was investigated in detail. The driving forces for the dyes to dissociate from the mitochondria and migrate toward the nucleus upon decreasing the MMP were two key molecular characteristics: the dyes' permeability to mitochondrial membranes and their affinity to nuclear DNA. The results provide significant insights into improving the molecular design of the dyes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8tb02415d | DOI Listing |