A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Cationic liposomes for generic signal amplification strategies in bioassays. | LitMetric

Cationic liposomes for generic signal amplification strategies in bioassays.

Anal Bioanal Chem

Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.

Published: May 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Liposomes have been widely applied in bioanalytical assays. Most liposomes used bare negative charges to prevent non-specific binding and increase colloidal stability. Here, in contrast, highly stable, positively charged liposomes entrapping the fluorescent dye sulforhodamine B (SRB) were developed to serve as a secondary, non-specific label' and signal amplification tool in bioanalytical systems by exploiting their electrostatic interaction with negatively charged vesicles, surfaces, and microorganisms. The cationic liposomes were optimized for long-term stability (> 5 months) and high dye entrapment yield. Their capability as secondary, non-specific labels was first successfully proven through electrostatic interactions of cationic and anionic liposomes using dynamic light scattering, and then in a bioassay with fluorescence detection leading to an enhancement factor of 8.5 without any additional surface blocking steps. Moreover, the cationic liposomes bound efficiently to anionic magnetic beads were stable throughout magnetic separation procedures and could hence serve directly as labels in magnetic separation and purification strategies. Finally, the electrostatic interaction was exploited for the direct, simple, non-specific labeling of gram-negative bacteria. Isolated Escherichia coli cells were chosen as models and direct detection was demonstrated via fluorescent and chemiluminescent liposomes. Thus, these cationic liposomes can be used as generic labels for the development of ultrasensitive bioassays based on electrostatic interaction without the need for additional expensive recognition units like antibodies, where desired specificity is already afforded through other strategies. Graphical abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214507PMC
http://dx.doi.org/10.1007/s00216-020-02612-wDOI Listing

Publication Analysis

Top Keywords

cationic liposomes
16
electrostatic interaction
12
liposomes generic
8
signal amplification
8
liposomes
8
secondary non-specific
8
magnetic separation
8
cationic
5
generic signal
4
amplification strategies
4

Similar Publications