Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Laser-driven positron production is expected to provide a non-radioactive, controllable, radiation tunable positron source in laboratories. We propose a novel approach of positron production by using a femto-second laser irradiating a microstructured surface target combined with a high-Z converter. By numerical simulations, it is shown that both the temperature and the maximum kinetic energy of electrons can be greatly enhanced by using a microstructured surface target instead of a planar target. When these energetic electrons shoot into a high Z converter, copious positrons are produced via Bethe-Heitler mechanism. With a laser (wavelength λ = 1 μm) with duration ~36 fs, intensity ~5.5 × 10 W/cm and energy ~6 Joule, ~10 positrons can be obtained.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7125301 | PMC |
http://dx.doi.org/10.1038/s41598-020-61964-6 | DOI Listing |