Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We present an adaptive coupling strategy to induce hysteresis/explosive synchronization in complex networks of phase oscillators (Sakaguchi-Kuramoto model). The coupling strategy ensures explosive synchronization with significant explosive width enhancement. Results show the robustness of the strategy, and the strategy can diminish (by inducing enhanced hysteresis loop) the contrarian impact of phase frustration in the network, irrespective of the network structure or frequency distributions. Additionally, we design a set of frequency for the oscillators, which eventually ensure complete in-phase synchronization behavior among these oscillators (with enhanced explosive width) in the case of adaptive-coupling scheme. Based on a mean-field analysis, we develop a semi-analytical formalism, which can accurately predict the backward transition of the synchronization order parameter.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0003410 | DOI Listing |