98%
921
2 minutes
20
Rationale: Examining surface protein conformations, and especially achieving this with spatial resolution, is an important goal. The recently discovered ionization processes offer spatial-resolution measurements similar to matrix-assisted laser desorption/ionization (MALDI) and produce charge states similar to electrospray ionization (ESI) extending higher-mass protein applications directly from surfaces on high-performance mass spectrometers. Studying a well-interrogated protein by ion mobility spectrometry-mass spectrometry (IMS-MS) to access effects on structures using a solid vs. solvent matrix may provide insights.
Methods: Ubiquitin was studied by IMS-MS using new ionization processes with commercial and homebuilt ion sources and instruments (Waters SYNAPT G2(S)) and homebuilt 2 m drift-tube instrument; MS™ sources). Mass-to-charge and drift-time (t )-measurements are compared for ubiquitin ions obtained by inlet and vacuum ionization using laserspray ionization (LSI), matrix- (MAI) and solvent-assisted ionization (SAI), respectively, and compared with those from ESI under conditions that are most comparable.
Results: Using the same solution conditions with SYNAPT G2(S) instruments, t -distributions of various ubiquitin charge states from MAI, LSI, and SAI are similar to those from ESI using a variety of solvents, matrices, extraction voltages, a laser, and temperature only, showing subtle differences in more compact features within the elongated distribution of structures. However, on a homebuilt drift-tube instrument, within the elongated distribution of structures, both similar and different t -distributions are observed for ubiquitin ions obtained by MAI and ESI. MAI-generated ions are frequently narrower in their t -distributions.
Conclusions: Direct comparisons between ESI and the new ionization methods operational directly from surfaces suggest that the protein in its solution structure prior to exposure to the ionization event is either captured (frozen out) at the time of crystallization, or that the protein in the solid matrix is associated with sufficient solvent to maintain the solution structure, or, alternatively, that the observed structures are those related to what occurs in the gas phase with ESI- or MAI-generated ions and not with the solution structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rcm.8793 | DOI Listing |
J Am Chem Soc
September 2025
National Engineering Research Center of Lower-Carbon Catalysis Technology, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Zeolite-confined Rh-based catalysts have emerged as promising heterogeneous candidates for olefin hydroformylation. However, they face challenges of reactant- and product-induced Rh leaching and aggregation. Herein, zeolite framework-anchored Rh-(O-Zn) sites were designed and are shown to have remarkable activity and stability for gas-phase ethylene hydroformylation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K.
Lead-free electroceramics have attracted significant research interest as alternatives to lead-containing systems due to concerns related to lead's toxicity to human health and the environment. Solid solutions based on bismuth sodium titanate (BNT) and barium titanate (BT), particularly those with compositions near the morphotropic phase boundary (MPB), such as 0.94 BiNaTiO-0.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland.
A virtually no-cost method is proposed that can compute the correlation energies of general, covalently bonded, organic, and inorganic molecules (including conjugated π-electron systems) with a well-defined dominant Lewis structure at the accuracy of 99.5% of the near-exact values determined by the coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] in the complete-basis-set (CBS) limit. This Correlation Energy Per Bond (CEPB) method assigns a partial correlation energy to each bond type (characterized by the identities of the two atoms forming the bond and its integer bond order) and to a lone pair, regardless of the bond length, bond angle, sp-hybridization, π-electron conjugation, ionicity, noncovalent interactions, etc.
View Article and Find Full Text PDFPhys Rev Lett
August 2025
University of Augsburg, Experimental Physics VI, Center for Electronic Correlations and Magnetism, 86159 Augsburg, Germany.
Magnon-phonon hybridization in ordered materials is a crucial phenomenon with significant implications for spintronics, magnonics, and quantum materials research. We present direct experimental evidence and theoretical insights into magnon-phonon coupling in Mn_{3}Ge, a kagome antiferromagnet with noncollinear spin order. Using inelastic x-ray scattering and ab initio modeling, we uncover strong hybridization between planar spin fluctuations and transverse optical phonons, resulting in a large hybridization gap of ∼2 meV.
View Article and Find Full Text PDFInorg Chem
September 2025
Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China.
In whitlockite-type compounds, the Eu ion can emit in a wide region from blue to yellow, but its luminescent mechanism remains unclear. Here, we performed a topological crystallography analysis of the whitlockite structure and first clarified the origin of the blue narrow emission band. Specifically, close-packing theory was used to reveal the topological character of β-Ca(PO) and describe its evolution from (PO) ( = Ba, Sr).
View Article and Find Full Text PDF