98%
921
2 minutes
20
Purpose: To investigate whether heat shock protein 90 (HSP90) is involved in complement regulation in ischemic postconditioning (IPC).
Methods: The left coronary artery of rats underwent 30 min of occlusion, followed by 120 min of reperfusion and treatment with IPC via 3 cycles of 30s reperfusion and 30s occlusion. The rats were injected intraperitoneally with 1 mg/kg HSP90 inhibitor geldanamycin (GA) after anesthesia. Eighty rats were randomly divided into four groups: sham, ischemia-reperfusion (I/R), IPC and IPC + GA. Myocardial infarct size, apoptosis index and the expression of HSP90, C3, C5a, tumor necrosis factor (TNF)-alpha, interleukin (IL)-1β and c-Jun N-terminal kinase (JNK) were assessed.
Results: Compared with the I/R injury, the IPC treatment significantly reduced infarct size, release of troponin T, creatine kinase-MB, and lactate dehydrogenase, and cardiomyocyte apoptosis. These beneficial effects were accompanied by a decrease in TNF-α, IL-1β, C3, C5a and JNK expression levels. However, all these effects were abrogated by administration of the HSP90 inhibitor GA.
Conclusion: HSP90 exerts a profound effect on IPC cardioprotection, and may be linked to the inhibition of the complement system and JNK, ultimately attenuating I/R-induced myocardial injury and apoptosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7092678 | PMC |
http://dx.doi.org/10.1590/s0102-865020200010000005 | DOI Listing |
MedComm (2020)
September 2025
Immunoglobulin A nephropathy (IgAN), the most prevalent primary glomerulonephritis globally, is characterized by mesangial IgA deposition and heterogeneous clinical trajectories. Historically, management relied on renin-angiotensin system inhibition and empirical immunosuppression, yet high lifetime kidney failure risk persists despite optimized care. This review synthesizes advances in molecular pathogenesis, highlighting how the traditional multi-hit hypothesis-while foundational for targeted therapy development-fails to capture IgAN's recurrent, self-amplifying nature.
View Article and Find Full Text PDFEMBO Mol Med
September 2025
Department of Neurology, Columbia University, New York, NY, 10032, USA.
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by ubiquitous deficiency in the SMN protein. The identification of disease modifiers is key to understanding pathogenic mechanisms and broadening the range of targets for developing SMA therapies that complement SMN upregulation. Here, we report a cell-based screen that identified inhibitors of p38 mitogen-activated protein kinase (p38 MAPK) as suppressors of proliferation defects induced by SMN deficiency in mouse fibroblasts.
View Article and Find Full Text PDFBiomed Pharmacother
September 2025
Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Electronic address:
Immune-mediated necrotizing myopathy (IMNM) is an emerging and severe form of myositis. Most patients experience persistent muscle weakness or recurrent attacks within their lifetime. The previous view suggests that autoimmune and complement activation play a key role in muscle damage, and aggressive immunotherapy may benefit patients.
View Article and Find Full Text PDFProbiotics Antimicrob Proteins
September 2025
Key Laboratory of the Ministry of Education for Wildlife and Plant Resources Conservation in Southwest China, College of Life Sciences, China West Normal University, Nanchong, Sichuan, China.
Enterotoxigenic Escherichia coli (ETEC) is a prevalent intestinal pathogen that significantly impacts both human and animal health. G83, isolated from giant panda feces, has demonstrated notable probiotic properties. In this study, C57BL/6 J mice were randomly divided into Control, ETEC, and G83 groups.
View Article and Find Full Text PDFNeuropsychopharmacology
September 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Chronic treatment with fluoxetine, a widely prescribed selective serotonin reuptake inhibitor (SSRI), is known to promote neural plasticity. The role of fluoxetine in plasticity has been particularly tied to parvalbumin-positive interneurons, a key population of GABAergic neurons that regulate inhibitory tone and network stability. While our previous studies have highlighted fluoxetine-induced plasticity in the visual cortex and hippocampus, its cell-type-specific effects in the prefrontal cortex (PFC) remain unclear.
View Article and Find Full Text PDF