Metabolomic perturbation precedes glycolytic dysfunction and procreates hyperglycemia in a rat model due to bisphenol S exposure.

Environ Toxicol Pharmacol

Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. Electronic address: somenduroy@

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Previous studies highlighted bisphenol S (BPS), an industrial chemical responsible for harmful effects comparable to its congener substance bisphenol A (BPA). Accounted for various adversities to biological functions, it could alter the expression of endogenous metabolites in many metabolic processes. The study was aimed to investigate the altered metabolites in hyperglycemic condition triggered by sub-chronic exposure of BPS in serum and urine samples of Wistar rats. Invaded effects of hyperglycemia due to BPS exposure on Wistar rats were investigated by oral glucose tolerance test (OGTT) and insulin tolerance test (ITT). Metabolomic profiling of serum and urinary metabolites was done by gas chromatography-mass spectrometry (GC-MS) analysis. The metabolomics data were represented by one way ANOVA, principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) along with the mapping of perturbed metabolic pathways. The OGTT and ITT showed increased levels of glucose in treated animals with median and high doses, indicating the manifestation of hyperglycemia. The metabolomic profiling of serum and urine revealed BPS could cause consequential metabolomic perturbation mainly of amino acids, sugars, and organic acids. Furthermore, the extrapolation of Kyoto Encyclopedia of Genes and Genomes (KEGG) based systematic analysis helped to monitor the altered pathways, including amino acids, glycolysis, pyruvate metabolism, etc., which were provoked due to BPS exposure. The overview of the perturbed metabolite profiling in rats promisingly showed early diagnostic markers of hyperglycemic condition triggered due to the BPS exposure. Findings from this study will be helpful towards the exploration of mechanistic insights of several disturbed pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.etap.2020.103372DOI Listing

Publication Analysis

Top Keywords

bps exposure
12
metabolomic perturbation
8
hyperglycemic condition
8
condition triggered
8
serum urine
8
wistar rats
8
tolerance test
8
metabolomic profiling
8
profiling serum
8
amino acids
8

Similar Publications

Background: Bisphenols are emerging pollutants of health concern. Exposure to bisphenols may impact hormone physiology, particularly during pregnancy, when the body is more vulnerable to disruptions.

Objective: This study aimed to identify bisphenol exposure profiles in pregnant women and to explore associations between urinary levels of these compounds and disruptions in reproductive and thyroid hormone levels during pregnancy.

View Article and Find Full Text PDF

Bisphenol A (BPA) and its analogs are collectively termed bisphenol compounds (BPs), which are predominantly utilized in the manufacturing of polycarbonate plastics and epoxy resins. BPs are ubiquitous in diverse environmental matrices, human tissues, and metabolic products. Extensive research has demonstrated that BPs exert adverse effects on the nervous, reproductive, immune, and metabolic systems.

View Article and Find Full Text PDF

Microplastics are widespread in global aquatic ecosystems and have become key vectors for transporting environmental contaminants. In this study, we investigated the adsorption behavior of bisphenol S (BPS) onto polyethylene terephthalate (PET) fibers under laboratory conditions. The adsorption capacity of PET fibers for BPS was concentration-dependent and reached equilibrium after approximately 48 h.

View Article and Find Full Text PDF

As benthic filter feeders, bivalve mollusks serve as ideal biological indicators. Bisphenol A (BPA) and its substitutes (BPS, BPF, and BPAF) are endocrine disruptors with reproductive toxicity, targeting estrogen receptors (ERs). However, their binding sites and affinity for shellfish ERs remain unclear.

View Article and Find Full Text PDF

: Bisphenols (BPs) and especially bisphenol S (BPS), an analog of bisphenol A (BPA), are widely used and induce oxidative stress, resulting in the inhibition of cell proliferation and induction of apoptosis which all are crucial for reproduction, the progression of pregnancy, and fertility. The present study integrates trophoblastic cells as an in vitro model to provide evidence and investigate the molecular interactions regarding placenta-related pregnancy complications after cytotoxic exposure to BPS. : Human endometrial epithelial adenocarcinoma Ishikawa cell lines and trophoblastic cells were cultured.

View Article and Find Full Text PDF