A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Growth of single crystalline films on lattice-mismatched substrates through 3D to 2D mode transition. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Regarding crystalline film growth on large lattice-mismatched substrates, there are two primary modes by which thin films grow on a crystal surface or interface. They are Volmer-Weber (VW: island formation) mode and Stranski-Krastanov (SK: layer-plus-island) mode. Since both growth modes end up in the formation of three-dimensional (3D) islands, fabrication of single crystalline films on lattice-mismatched substrates has been challenging. Here, we demonstrate another growth mode, where a buffer layer consisting of 3D islands initially forms and a relaxed two-dimensional (2D) layer subsequently grows on the buffer layer. This 3D-2D mode transition has been realized using impurities. We observed the 3D-2D mode transition for the case of ZnO film growth on 18%-lattice-mismatched sapphire substrates. First, nano-sized 3D islands grow with the help of nitrogen impurities. Then, the islands coalesce to form a 2D layer after cessation of the nitrogen supply, whereupon an increase in the surface energy may provide a driving force for the coalescence. Finally, the films grow in 2D mode, forming atomically flat terraces. We believe that our findings will offer new opportunities for high-quality film growth of a wide variety of materials that have no lattice-matched substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7070095PMC
http://dx.doi.org/10.1038/s41598-020-61596-wDOI Listing

Publication Analysis

Top Keywords

lattice-mismatched substrates
12
mode transition
12
film growth
12
single crystalline
8
crystalline films
8
films lattice-mismatched
8
films grow
8
buffer layer
8
3d-2d mode
8
mode
7

Similar Publications