Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
MicroRNAs (miRNAs) have been shown to be closely related to cancer progression. Traditional methods for discovering cancer-related miRNAs mostly require significant marginal differential expression, but some cancer-related miRNAs may be non-differentially or only weakly differentially expressed. Such miRNAs are called dark matters miRNAs (DM-miRNAs) and are targeted through the Pearson correlation change on miRNA-target interactions (MTIs), but the efficiency of their method heavily relies on restrictive assumptions. In this paper, a novel method was developed to discover DM-miRNAs using support vector machine (SVM) based on not only the miRNA expression data but also the expression of its regulating target. The application of the new method in breast and kidney cancer datasets found, respectively, 9 and 24 potential DM-miRNAs that cannot be detected by previous methods. Eight and 15 of the newly discovered miRNAs have been found to be associated with breast and kidney cancers, respectively, in existing literature. These results indicate that our new method is more effective in discovering cancer-related miRNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7056629 | PMC |
http://dx.doi.org/10.1016/j.omtn.2020.01.019 | DOI Listing |