A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Synthesis and Biological Screening of New Lawson Derivatives as Selective Substrate-Based Inhibitors of Cytochrome bo Ubiquinol Oxidase from Escherichia coli. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The respiratory chain of Escherichia coli contains two different types of terminal oxidase that are differentially regulated as a response to changing environmental conditions. These oxidoreductases catalyze the reduction of molecular oxygen to water and contribute to the proton motive force. The cytochrome bo oxidase (cyt bo ) acts as the primary terminal oxidase under atmospheric oxygen levels, whereas the bd-type oxidase is most abundant under microaerobic conditions. In E. coli, both types of respiratory terminal oxidase (HCO and bd-type) use ubiquinol-8 as electron donor. Here, we assess the inhibitory potential of newly designed and synthesized 3-alkylated Lawson derivatives through L-proline-catalyzed three-component reductive alkylation (TCRA). The inhibitory effects of these Lawson derivatives on the terminal oxidases of E. coli (cyt bo and cyt bd-I) were tested potentiometrically. Four compounds were able to reduce the oxidoreductase activity of cyt bo by more than 50 % without affecting the cyt bd-I activity. Moreover, two inhibitors for both cyt bo and cyt bd-I oxidase could be identified. Based on molecular-docking simulations, we propose binding modes of the new Lawson inhibitors. The molecular fragment benzyl enhances the inhibitory potential and selectivity for cyt bo , whereas heterocycles reduce this effect. This work extends the library of 3-alkylated Lawson derivatives as selective inhibitors for respiratory oxidases and provides molecular probes for detailed investigations of the mechanisms of respiratory-chain enzymes of E. coli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7497249PMC
http://dx.doi.org/10.1002/cmdc.201900707DOI Listing

Publication Analysis

Top Keywords

lawson derivatives
16
terminal oxidase
12
cyt bd-i
12
derivatives selective
8
escherichia coli
8
coli types
8
cyt
8
inhibitory potential
8
3-alkylated lawson
8
cyt cyt
8

Similar Publications