A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Flavin-Containing Monooxygenase 1 Catalyzes the Production of Taurine from Hypotaurine. | LitMetric

Flavin-Containing Monooxygenase 1 Catalyzes the Production of Taurine from Hypotaurine.

Drug Metab Dispos

Department of Structural and Molecular Biology, University College London, London, United Kingdom (S.V., I.R.P., E.A.S.); School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom (I.R.P.); and Medway Metabonomics Research Group, University of Greenwich, Cha

Published: May 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Taurine is one of the most abundant amino acids in mammalian tissues. It is obtained from the diet and by de novo synthesis from cysteic acid or hypotaurine. Despite the discovery in 1954 that the oxygenation of hypotaurine produces taurine, the identification of an enzyme catalyzing this reaction has remained elusive. In large part, this is due to the incorrect assignment, in 1962, of the enzyme as an NAD-dependent hypotaurine dehydrogenase. For more than 55 years, the literature has continued to refer to this enzyme as such. Here we show, both in vivo and in vitro, that the enzyme that oxygenates hypotaurine to produce taurine is flavin-containing monooxygenase (FMO) 1. Metabolite analysis of the urine of -null mice by H NMR spectroscopy revealed a buildup of hypotaurine and a deficit of taurine in comparison with the concentrations of these compounds in the urine of wild-type mice. In vitro assays confirmed that human FMO1 catalyzes the conversion of hypotaurine to taurine, utilizing either NADPH or NADH as cofactor. FMO1 has a wide substrate range and is best known as a xenobiotic- or drug-metabolizing enzyme. The identification that the endogenous molecule hypotaurine is a substrate for the FMO1-catalyzed production of taurine resolves a long-standing mystery. This finding should help establish the role FMO1 plays in a range of biologic processes in which taurine or its deficiency is implicated, including conjugation of bile acids, neurotransmitter, antioxidant and anti-inflammatory functions, and the pathogenesis of obesity and skeletal muscle disorders. SIGNIFICANCE STATEMENT: The identity of the enzyme that catalyzes the biosynthesis of taurine from hypotaurine has remained elusive. Here we show, both in vivo and in vitro, that flavin-containing monooxygenase 1 catalyzes the oxygenation of hypotaurine to produce taurine.

Download full-text PDF

Source
http://dx.doi.org/10.1124/dmd.119.089995DOI Listing

Publication Analysis

Top Keywords

flavin-containing monooxygenase
12
taurine
10
hypotaurine
10
monooxygenase catalyzes
8
production taurine
8
taurine hypotaurine
8
hypotaurine taurine
8
oxygenation hypotaurine
8
remained elusive
8
vivo vitro
8

Similar Publications