Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The central serotonergic system originating from the dorsal raphe nucleus (DR) plays a critical role in anxiety and trauma-related disorders such as posttraumatic stress disorder. Although many studies have investigated the role of serotonin (5-HT) within pro-fear brain regions such as the amygdala, the majority of these studies have utilized non-selective pharmacological approaches or poorly understood lesioning techniques which limit their interpretation.

Aim: Here we investigated the role of amygdala-projecting 5-HT neurons in the DR in innate anxiety and conditioned fear behaviors.

Methods: To achieve this goal, we utilized (1) selective lesion of 5-HT neurons projecting to the amygdala with saporin toxin conjugated to anti-serotonin transporter (SERT) injected into the amygdala, and (2) optogenetic excitation of amygdala-projecting DR cell bodies with a combination of a retrogradely transported canine adenovirus-expressing Cre-recombinase injected into the amygdala and a Cre-dependent-channelrhodopsin injected into the DR.

Results: While saporin treatment lesioned both local amygdalar 5-HT fibers and neurons in the DR as well as reduced conditioned fear behavior, optical activation of amygdala-projecting DR neurons enhanced anxious behavior and conditioned fear response.

Conclusion: Collectively, these studies support the hypothesis that amygdala-projecting 5-HT neurons in the DR represent an anxiety and fear-on network.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9678127PMC
http://dx.doi.org/10.1177/0269881119900981DOI Listing

Publication Analysis

Top Keywords

conditioned fear
16
5-ht neurons
12
dorsal raphe
8
raphe nucleus
8
investigated role
8
amygdala-projecting 5-ht
8
injected amygdala
8
neurons
6
amygdala-projecting
5
5-ht
5

Similar Publications

Social Buffering of Acute Early Life Stress Sex-Dependently Ameliorates Fear Incubation in Adulthood.

Dev Psychobiol

September 2025

Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio, USA.

Social buffering may reduce the persistent impacts of acute early life stress (aELS) and, thus, has important implications for anxiety- and trauma-related disorders. First, we assessed whether aELS would induce maladaptive fear incubation in adult mice, a PTSD-like phenotype. Overall, animals showed incubation of fear memory in adulthood, independent of aELS condition.

View Article and Find Full Text PDF

Adolescent male rodents and humans exhibit impairments in extinguishing learned fear. Here, we investigated whether female adolescent rats exhibit such impairments and if extinction is affected by the estrous cycle as in adults. Following fear conditioning to a discrete cue, female adolescent Sprague Dawley rats were extinguished either around the onset of puberty, when estrous cycling begins, or across different stages of the estrous cycle.

View Article and Find Full Text PDF

Activation of glucocorticoid receptors facilitates ex vivo high-frequency network oscillations in the anterior cingulate cortex.

Neuroscience

September 2025

Research Group "Synapto-Oscillopathies", Institute of Biology, Otto-von-Guericke-University, Magdeburg, Germany; Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.

Stress activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing corticosterone (CORT), which binds to glucocorticoid (GR) and mineralocorticoid (MR) receptors in the brain. While stress influences behaviorally relevant network oscillations in limbic regions such as the hippocampus, amygdala, and prefrontal cortex, the direct effects of CORT on these oscillations remain unclear. We examined the acute impact of CORT on anterior cingulate cortex (ACC) oscillations in adult male mice, a hub region for stress and anxiety regulation.

View Article and Find Full Text PDF

Study Objectives: Brief sleep loss alters cognition and the activity and synaptic structures of both principal neurons and interneurons in hippocampus. However, although sleep-dependent coordination of activity between hippocampus and neocortex is essential for memory consolidation, much less is known about how sleep loss affects neocortical input to hippocampus, or excitatory-inhibitory balance within neocortical structures. We aimed to test how the synaptic structures of SST+ interneurons in lateral and medial entorhinal cortex (LEC and MEC), which are the major neocortical input to hippocampus, are affected by brief sleep disruption in the hours following learning.

View Article and Find Full Text PDF

Disrupted calcium dynamics and electrophysiological activity in the stratum pyramidale and hippocampal alveus during fear conditioning in the 5xFAD model of Alzheimer's disease.

Front Aging Neurosci

August 2025

Laboratory of Molecular Neurodegeneration, Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia.

Alzheimer's disease (AD) is a neurodegenerative disorder that leads to progressive cognitive decline and significant disruptions in hippocampal neural networks, critically impacting memory and learning. Understanding the neural mechanisms underlying these impairments is essential for developing effective therapies. The 5xFAD mouse model, known for progressive neurodegeneration and cognitive deficits, provides a valuable platform for investigating associative learning and memory impairments related to AD.

View Article and Find Full Text PDF