The effect of vertebral body stapling on spine biomechanics and structure using a bovine model.

Clin Biomech (Bristol)

QUT/Mater Biomechanics and Spine Research Group, Institute of Health and Biomedical Innovation, Queensland University of Technology and Mater Health Services, Brisbane, Australia.

Published: April 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Adolescent idiopathic scoliosis is a common condition affecting 2.5% of the general population. Vertebral body stapling was introduced as a method of fusionless growth modulation for the correction of moderate idiopathic scoliosis (Cobb angles of 20-40°), and was claimed to be more effective than bracing and less invasive than fusion. The aim of this study was to assess the effect of vertebral body stapling on the stiffness of a thoracic motion segment unit under moment controlled load, and to assess the vertebral structural damage caused by the staples.

Methods: Thoracic spine motion segments from 6 to 8 week old calves (n=14) were tested in flexion/extension, lateral bending, and axial rotation. The segments were tested un-instrumented, then a left anterolateral intervertebral Shape Memory Alloy (SMA) staple was inserted and the test was repeated. Data were collected from the tenth load cycle of each sequence and stiffness was calculated. The staples were carefully removed and the segments were studied with micro-computed tomography to assess physical damage to the bony structure. Visual assessment of the vertebral bone structure on micro-CT was performed.

Findings: There was no change in motion segment stiffness in flexion/extension nor in axial rotation. There was a reduction in stiffness in lateral bending with 30% reduction bending away from the staple and 12% reduction bending towards the staple. Micro-CT showed physeal damage in all the specimens.

Interpretation: Intervertebral stapling using SMA staples cause a reduction in spine stiffness in lateral bending. They also cause damage to the endplate epiphyses.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clinbiomech.2020.02.006DOI Listing

Publication Analysis

Top Keywords

vertebral body
12
body stapling
12
lateral bending
12
idiopathic scoliosis
8
assess vertebral
8
motion segment
8
axial rotation
8
stiffness lateral
8
reduction bending
8
bending staple
8

Similar Publications

Objectives: The escalating global incidence of obesity, cardiometabolic disease and sarcopenia necessitates reliable body composition measurement tools. MRI-based assessment is the gold standard, with utility in both clinical and drug trial settings. This study aims to validate a new automated volumetric MRI method by comparing with manual ground truth, prior volumetric measurements, and against a new method for semi-automated single-slice area measurements.

View Article and Find Full Text PDF

Purpose: To develop a comprehensive ICF Core Set (ICF-CS) for vertebral fragility fracture.

Materials And Methods: The development of ICF-CSs involves three phases: i) systematic literature review and qualitative studies; ii) linking process to identify the ICF codes and categories; iii) international consensus process. i) We performed a literature search and qualitative studies with people with vertebral fragility fractures and healthcare professionals; ii) We linked the findings from the search and qualitative studies to the ICF categories, and drafted the proposed ICF-CS; iii) We performed an international consensus process involving experts with clinical or research experience in management of vertebral fragility fractures.

View Article and Find Full Text PDF

Background: Cervical vertebral maturation (CVM) is a skeletal maturity method that can be assessed routinely on whole spine radiographs to minimize radiation exposure. Originally used in orthodontics, its role in staging adolescent growth spurt and curve progression in adolescent idiopathic scoliosis (AIS) remains unclear. The aim of this study was to investigate growth rates across CVM stages, its cutoff for indicating peak growth (PG) versus growth cessation (GC), and its relationship with coronal curve progression.

View Article and Find Full Text PDF

This study aims to clarify the dynamic changes in the cervical lordotic angle (CLA) during normal swallowing using an automated motion analysis method. Physiological cervical lordosis is crucial for spinal alignment and musculoskeletal function. While previous studies have noted the relevance of cervical curvature in clinical contexts, its dynamic modulation during swallowing has not been well studied.

View Article and Find Full Text PDF

Rationale: Nocardia spp. are opportunistic pathogens that invade the human body via respiratory inhalation or direct skin wounds. Spinal nocardial osteomyelitis is a rare disease with only a few cases reported to date.

View Article and Find Full Text PDF