Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Traditional polymer membranes exhibit a constant structure that makes adjustment of the filtration process difficult, such as flux changing and contaminant cleaning. Inspired by the automatically closing behavior of leaf stomata under strong light, we prepared a membrane with thermo- and photosensitivities, whose microstructure, as well as filtration properties, could be controlled by adjusting the light condition. The membrane was fabricated by the immersion phase inversion method with a casting solution of polyvinylidene fluoride--poly(-isopropylacrylamide) (PVDF--PNIPAAm) and graphene oxide (GO) nanosheets. Additionally, the membrane could be heated to a high temperature in a short time under illumination, causing shrinkage of its PNIPAAm chains and expansion of its membrane pores. On the basis of the reversible photoinduced structural transformation, the membrane exhibited a high water gating ratio under the switching of light on/off. Moreover, we proposed a novel and simple method to clear the contaminant from the pores of the membrane via light, which we named "light-cleaning". Light-cleaning had a flux recovery rate of 99.2%, substantially higher than that of back-washing (62%). This work not only extends the controllability and functionality of the polymer membrane but also develops a new membrane cleaning system.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c00410DOI Listing

Publication Analysis

Top Keywords

membrane
9
polymer membrane
8
graphene oxide
8
oxide nanosheets
8
photo- thermosensitive
4
thermosensitive polymer
4
membrane tunable
4
tunable microstructure
4
microstructure doped
4
doped graphene
4

Similar Publications

Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.

View Article and Find Full Text PDF

Purpose: To clinically validate the nursing diagnosis "Inadequate Nutritional Intake" based on elements identified within a specific situation theory framework in the context of children with cancer.

Methods: This is a diagnostic accuracy study following the Standards for Reporting Diagnostic Accuracy Studies (STARD) protocol. Specifically, it refers to the clinical validation phase of the nursing diagnosis Inadequate nutritional intake, using a cross-sectional design.

View Article and Find Full Text PDF

In the presence of chromatin bridges in cytokinesis, human cells retain actin-rich structures (actin patches) at the base of the intercellular canal to prevent chromosome breakage. Here, we show that daughter nuclei connected by chromatin bridges are under mechanical tension that requires interaction of the nuclear membrane Sun1/2-Nesprin-2 Linker of Nucleoskeleton and Cytoskeleton (LINC) complex with the actin cytoskeleton, and an intact nuclear lamina. This nuclear tension promotes accumulation of Sun1/2-Nesprin-2 proteins at the base of chromatin bridges and local enrichment of the RhoA-activator PDZ RhoGEF through PDZ-binding to cytoplasmic Nesprin-2 spectrin repeats.

View Article and Find Full Text PDF

Construction of a bacterial surface display system using split green fluorescent protein (GFP) in Escherichia coli.

Biotechnol Lett

September 2025

Department of Chemical Engineering, Hongik University, Sangsu-dong, Mapo-gu, Seoul, 04066, Republic of Korea.

The cell surface display system employs carrier proteins to present target proteins on the outer membrane of cells. This system enables functional proteins to be exposed on the exterior of living cells without cell lysis, allowing direct interaction with the surrounding environment. A major limitation of conventional approaches is the difficulty in displaying large-sized enzymes or antibodies, despite their critical roles in applications requiring functional domains that must remain intact, such as catalytic or antigen-binding sites.

View Article and Find Full Text PDF

Navigating condensate micropolarity to enhance small-molecule drug targeting.

Nat Chem Biol

September 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Many pharmaceutical targets partition into biomolecular condensates, whose microenvironments can significantly influence drug distribution. Nevertheless, it is unclear how drug design principles should adjust for these targets to optimize target engagement. To address this question, we systematically investigated how condensate microenvironments influence drug-targeting efficiency.

View Article and Find Full Text PDF