Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In ice thickness measurement (ICM) procedures based on Raman scattering, a key issue is the detection of ice-water interface using the slight difference between the Raman spectra of ice and water. To tackle this issue, we developed a new deep residual network (DRN) to cast this detection as an identification problem. Thus, the interface detection is converted to the prediction of the Raman spectra of ice and water. We enabled this process by designing a powerful DRN that was trained by a set of Raman spectral data, obtained in advance. In contrast to the state-of-the-art Gaussian fitting method (GFM), the proposed DRN enables ICM with a simple operation and low costs, as well as high accuracy and speed. Experimental results were collected to demonstrate the feasibility and effectiveness of the proposed DRN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.378735 | DOI Listing |