A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Entropy-driven binding of octyl gallate in albumin: Failure in the application of temperature effect to distinguish dynamic and static fluorescence quenching. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Fluorescence quenching is widely used to obtain association constants between proteins and ligands. This methodology is based on assumption that ground-state complex between protein and ligand is responsible for quenching. Here, we call the attention about the risk of using the temperature criterion for decision of applying or not fluorescence quenching data to measure association constants. We demonstrated that hydrophobic effect can be the major force involved in the interaction and, as such, superposes the well-established rationalization that host/guest complexation is weakened at higher temperatures due to loss of translational and rotational degrees of freedom. To do so, the complexation of bovine serum albumin with octyl gallate was studied by steady-state, time-resolved fluorescence spectroscopy and isothermal titration calorimetry. The results clearly demonstrated the complexation, even though the Stern-Volmer constant increased at higher temperatures (1.6 × 10 and 4.1 × 10  mol L at 20°C and 40°C), which could suggest a simple dynamic process and not complexation. The entropy-driven feature of the interaction was demonstrated by the unfavorable enthalpy (∆H° = 104.4 kJmol ) but favorable entropy (∆S° = 447.5 Jmol K ). The relevance of the ligand hydrophobicity was also evaluated by comparing ascorbic acid and its ester ascorbyl palmitate. Docking simulations showed a higher number of hydrophobic contacts and lower energy poses for the esters, confirming the experimental results. In conclusion, the well-established rationalization that host/guest complexation is weakened at higher temperatures is not straightforward for protein-ligand interactions. Hence, the temperature effect for a decision between static and dynamic quenching and its use to decide if a complexation at ground state is taking place between ligand and protein should not be used.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmr.2840DOI Listing

Publication Analysis

Top Keywords

fluorescence quenching
12
higher temperatures
12
octyl gallate
8
association constants
8
well-established rationalization
8
rationalization host/guest
8
host/guest complexation
8
complexation weakened
8
weakened higher
8
complexation
6

Similar Publications