Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Diamond like carbon (DLC) films with different C-C sp2/sp3 ratios were prepared by tuning the N2 flow rate in a filtered cathodic vacuum arc (FCVA) system. The increase of N2 flow rate facilitated the increase of C-C sp2/sp3 ratio (1.09-2.66), the growth of particle size (0.78-1.58 nm) and the improvement of surface roughness. The SBF immersion results, as well as WCAs (77.57°~71.71°), hemolysis rate (0.14-1.00%) and cytotoxicity level (0) demonstrated that the as-fabricated DLC film was promising for biomedical application. As a result of surface charge effect, the apatite layers formed in the SBF increased with the increase of C-C sp2/sp3 ratio until 1.74 and then showed a tiny decrease during 1.74-2.66. A raise of hemolysis and cytotoxicity was observed when sp2/sp3 ratio was increased. Moreover, a decrease of friction coefficient of Si surface induced by increasing sp2/sp3 ratio was respectively evidenced in ambient air and SBF lubrication environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7033527 | PMC |
http://dx.doi.org/10.1016/j.bioactmat.2020.02.009 | DOI Listing |