A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images. | LitMetric

Multi-Scale deep learning framework for cochlea localization, segmentation and analysis on clinical ultra-high-resolution CT images.

Comput Methods Programs Biomed

Department of Radiology and Nuclear Medicine, Radboudumc, Geert Grooteplein Zuid 10, 6525 GA, Nijmegen, the Netherlands. Electronic address:

Published: July 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Objective: Performing patient-specific, pre-operative cochlea CT-based measurements could be helpful to positively affect the outcome of cochlear surgery in terms of intracochlear trauma and loss of residual hearing. Therefore, we propose a method to automatically segment and measure the human cochlea in clinical ultra-high-resolution (UHR) CT images, and investigate differences in cochlea size for personalized implant planning.

Methods: 123 temporal bone CT scans were acquired with two UHR-CT scanners, and used to develop and validate a deep learning-based system for automated cochlea segmentation and measurement. The segmentation algorithm is composed of two major steps (detection and pixel-wise classification) in cascade, and aims at combining the results of a multi-scale computer-aided detection scheme with a U-Net-like architecture for pixelwise classification. The segmentation results were used as an input to the measurement algorithm, which provides automatic cochlear measurements (volume, basal diameter, and cochlear duct length (CDL)) through the combined use of convolutional neural networks and thinning algorithms. Automatic segmentation was validated against manual annotation, by the means of Dice similarity, Boundary-F1 (BF) score, and maximum and average Hausdorff distances, while measurement errors were calculated between the automatic results and the corresponding manually obtained ground truth on a per-patient basis. Finally, the developed system was used to investigate the differences in cochlea size within our patient cohort, to relate the measurement errors to the actual variation in cochlear size across different patients.

Results: Automatic segmentation resulted in a Dice of 0.90 ± 0.03, BF score of 0.95 ± 0.03, and maximum and average Hausdorff distance of 3.05 ± 0.39 and 0.32 ± 0.07 against manual annotation. Automatic cochlear measurements resulted in errors of 8.4% (volume), 5.5% (CDL), 7.8% (basal diameter). The cochlea size varied broadly, ranging between 0.10 and 0.28 ml (volume), 1.3 and 2.5 mm (basal diameter), and 27.7 and 40.1 mm (CDL).

Conclusions: The proposed algorithm could successfully segment and analyze the cochlea on UHR-CT images, resulting in accurate measurements of cochlear anatomy. Given the wide variation in cochlear size found in our patient cohort, it may find application as a pre-operative tool in cochlear implant surgery, potentially helping elaborate personalized treatment strategies based on patient-specific, image-based anatomical measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2020.105387DOI Listing

Publication Analysis

Top Keywords

cochlea size
12
basal diameter
12
cochlea
8
clinical ultra-high-resolution
8
cochlear
8
investigate differences
8
differences cochlea
8
automatic cochlear
8
cochlear measurements
8
automatic segmentation
8

Similar Publications