Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objectives: The aim of this study was to develop machine learning (ML) and initial nursing assessment (INA)-based emergency department (ED) triage to predict adverse clinical outcome.
Methods: The retrospective study included ED visits between January 2016 and December 2017 that resulted in either intensive care unit admission or emergency room death. We trained four classifiers using logistic regression and a deep learning model on INA and low dimensional (LD) INA, logistic regression on the Korea Triage and acuity scale (KTAS) and Sequential Related Organ Failure Assessment (SOFA). We varied the outcome ratio for external validation. Finally, variables of importance were identified using the random forest model's information gain. The four most influential variables were used for LD modeling for efficiency.
Results: A total of 86,304 patient visits were included, with an overall outcome rate of 3.5%. The area under the curve (AUC) values for the KTAS model were 76.8 (74.9-78.6) with logistic regression and 74.0 (72.1-75.9) for the SOFA model, while the AUC values of the INA model were 87.2 (85.9-88.6) and 87.6 (86.3-88.9) with logistic regression and deep learning, suggesting that the ML and INA-based triage system result more accurately predicted the outcomes. The AUC values for the LD model were 81.2 (79.4-82.9) and 80.7 (78.9-82.5) for logistic regression and deep learning, respectively.
Conclusions: We developed an ML and INA-based triage system for EDs. The novel system was able to predict clinical outcomes more accurately than existing triage systems, KTAS and SOFA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010940 | PMC |
http://dx.doi.org/10.4258/hir.2020.26.1.13 | DOI Listing |