Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Cell membranes spatially define gradients that drive the complexity of biological signals. To guarantee movements and exchanges of solutes between compartments, membrane transporters negotiate the passages of ions and other important molecules through lipid bilayers. The Na/Ca exchangers (NCXs) in particular play central roles in balancing Na and Ca fluxes across diverse proteolipid borders in all eukaryotic cells, influencing cellular functions and fate by multiple means. To prevent progression from balance to disease, redundant regulatory mechanisms cooperate at multiple levels (transcriptional, translational, and post-translational) and guarantee that the activities of NCXs are finely-tuned to cell homeostatic requirements. When this regulatory network is disturbed by pathological forces, cells may approach the end of life. In this review, we will discuss the main findings, controversies and open questions about regulatory mechanisms that control NCX functions in health and disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceca.2020.102169 | DOI Listing |