A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

How biomechanics, path planning and sensing enable gliding flight in a natural environment. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gliding animals traverse cluttered aerial environments when performing ecologically relevant behaviours. However, it is unknown how gliders execute collision-free flight over varying distances to reach their intended target. We quantified complete glide trajectories amid obstacles in a naturally behaving population of gliding lizards inhabiting a rainforest reserve. In this cluttered habitat, the lizards used glide paths with fewer obstacles than alternatives of similar distance. Their takeoff direction oriented them away from obstacles in their path and they subsequently made mid-air turns with accelerations of up to 0.5 g to reorient towards the target tree. These manoeuvres agreed well with a vision-based steering model which maximized their bearing angle with the obstacle while minimizing it with the target tree. Nonetheless, negotiating obstacles reduced mid-glide shallowing rates, implying greater loss of altitude. Finally, the lizards initiated a pitch-up landing manoeuvre consistent with a visual trigger model, suggesting that the landing decision was based on the optical size and speed of the target. They subsequently followed a controlled-collision approach towards the target, ending with variable impact speeds. Overall, the visually guided path planning strategy that enabled collision-free gliding required continuous changes in the gliding kinematics such that the lizards never attained theoretically ideal steady-state glide dynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7062017PMC
http://dx.doi.org/10.1098/rspb.2019.2888DOI Listing

Publication Analysis

Top Keywords

path planning
8
target tree
8
gliding
5
target
5
biomechanics path
4
planning sensing
4
sensing enable
4
enable gliding
4
gliding flight
4
flight natural
4

Similar Publications