98%
921
2 minutes
20
This paper presents a novel approach for classifying obsessive-compulsive disorder (OCD) in adolescents from resting-state fMRI data. Currently, the state-of-the-art for diagnosing OCD in youth involves interviews with adolescent patients and their parents by an experienced clinician, symptom rating scales based on Diagnostic and Statistical Manual of Mental Disorders (DSM), and behavioral observation. Discovering signal processing and network-based biomarkers from functional magnetic resonance imaging (fMRI) scans of patients has the potential to assist clinicians in their diagnostic assessments of adolescents suffering from OCD. This paper investigates the clinical diagnostic utility of a set of univariate, bivariate and multivariate features extracted from resting-state fMRI using an information-theoretic approach in 15 adolescents with OCD and 13 matched healthy controls. Results indicate that an information-theoretic approach based on sub-graph entropy is capable of classifying OCD vs. healthy subjects with high accuracy. Mean time-series were extracted from 85 brain regions and were used to calculate Shannon wavelet entropy, Pearson correlation matrix, network features and sub-graph entropy. In addition, two special cases of sub-graph entropy, namely node and edge entropy, were investigated to identify important brain regions and edges from OCD patients. A leave-one-out cross-validation method was used for the final predictor performance. The proposed methodology using differential sub-graph (edge) entropy achieved an accuracy of 0.89 with specificity 1 and sensitivity 0.80 using leave-one-out cross-validation with in-fold feature ranking and selection. The high classification accuracy indicates the predictive power of the sub-network as well as edge entropy metric.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025090 | PMC |
http://dx.doi.org/10.1016/j.nicl.2020.102208 | DOI Listing |
Entropy (Basel)
May 2025
Institute of Software Technology, German Aerospace Center (DLR), 51147 Cologne, Germany.
High-resolution temporal contact networks are useful ingredients for realistic epidemic simulations. Existing solutions typically rely either on empirical studies that capture fine-grained interactions via Bluetooth or wearable sensors in confined settings or on large-scale simulation frameworks that model entire populations using generalized assumptions. However, for most realistic modeling of epidemic spread and the evaluation of countermeasures, there is a critical need for highly resolved, temporal contact networks that encompass multiple venues without sacrificing the intricate dynamics of real-world contacts.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
July 2021
This paper introduces an approach for classifying adolescents suffering from MDD using resting-state fMRI. Accurate diagnosis of MDD involves interviews with adolescent patients and their parents, symptom rating scales based on Diagnostic and Statistical Manual of Mental Disorders (DSM), behavioral observation as well as the experience of a clinician. Discovering predictive biomarkers for diagnosing MDD patients using functional magnetic resonance imaging (fMRI) scans can assist the clinicians in their diagnostic assessments.
View Article and Find Full Text PDFNeuroimage Clin
March 2021
Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis. Electronic address:
This paper presents a novel approach for classifying obsessive-compulsive disorder (OCD) in adolescents from resting-state fMRI data. Currently, the state-of-the-art for diagnosing OCD in youth involves interviews with adolescent patients and their parents by an experienced clinician, symptom rating scales based on Diagnostic and Statistical Manual of Mental Disorders (DSM), and behavioral observation. Discovering signal processing and network-based biomarkers from functional magnetic resonance imaging (fMRI) scans of patients has the potential to assist clinicians in their diagnostic assessments of adolescents suffering from OCD.
View Article and Find Full Text PDFSci Rep
May 2019
Department of Electrical and Computer Engineering, University of Minnesota - Twin Cities, Minneapolis, USA.
This paper considers analysis of human brain networks or graphs constructed from time-series collected from functional magnetic resonance imaging (fMRI). In the network of time-series, the nodes describe the regions and the edge weights correspond to the absolute values of correlation coefficients of the time-series of the two nodes associated with the edges. The paper introduces a novel information-theoretic metric, referred as sub-graph entropy, to measure uncertainty associated with a sub-graph.
View Article and Find Full Text PDFFront Genet
September 2015
Laboratory of Translational Genomics, Centre for Integrative Biology, University of Trento Trento, Italy.
Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes.
View Article and Find Full Text PDF