Distinct dual roles of p-Tyr42 RhoA GTPase in tau phosphorylation and ATP citrate lyase activation upon different Aβ concentrations.

Redox Biol

Department of Biochemistry, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon, Kangwon-do, 24252, Republic of Korea; Hallym Clinical and Translational Science Institute

Published: May 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Both the accumulation of Amyloid-β (Aβ) in plaques and phosphorylation of Tau protein (p-Tau) in neurofibrillary tangles have been identified as two major symptomatic features of Alzheimer's disease (AD). Despite of critical role of Aβ and p-Tau in AD progress, the interconnection of signalling pathways that Aβ induces p-Tau remains elusive. Herein, we observed that a popular AD model mouse (APP/PS1) and Aβ-injected mouse showed an increase in p-Tyr42 Rho in hippocampus of brain. Low concentrations of Aβ (1 μM) induced RhoA-mediated Ser422 phosphorylation of Tau protein (p-Ser422 Tau), but reduced the expression of ATP citrate lyase (ACL) in the HT22 hippocampal neuronal cell line. In contrast, high concentrations of Aβ (10 μM) along with high levels of superoxide production remarkably attenuated accumulation of p-Ser422 Tau, but augmented ACL expression and activated sterol regulatory element-binding protein 1 (SREBP1), leading to cellular senescence. Notably, a high concentration of Aβ (10 μM) induced nuclear localization of p-Tyr42 Rho, which positively regulated NAD kinase (NADK) expression by binding to the NADK promoter. Furthermore, severe AD patient brain showed high p-Tyr42 Rho levels. Collectively, our findings indicate that both high and low concentrations of Aβ are detrimental to neurons via distinct two p-Tyr42 RhoA-mediated signalling pathways in Ser422 phosphorylation of Tau and ACL expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7264465PMC
http://dx.doi.org/10.1016/j.redox.2020.101446DOI Listing

Publication Analysis

Top Keywords

phosphorylation tau
12
p-tyr42 rho
12
concentrations aβ
12
atp citrate
8
citrate lyase
8
8
tau protein
8
signalling pathways
8
low concentrations
8
ser422 phosphorylation
8

Similar Publications

Objective: The objective of this study was to determine the predictive value of amyloid-positron emission tomography (PET) versus the plasma ratio of phosphorylated tau at threonine 217 (p-tau217) to non-phosphorylated tau217 (%p-tau217) for tau-PET transitions (T- to T+). The added value of combining plasma amyloid-β 42 and amyloid-β 40 (Aβ42/40) and %p-tau217 into an amyloid probability score (APS2) was also assessed.

Methods: Mayo Clinic Study of Aging (MCSA) participants had plasma markers measured at via mass spectrometry (MS), an amyloid-PET scan, and a tau-PET (meta-temporal region of interest [ROI]) negative scan (standardized uptake value ratio [SUVR] <1.

View Article and Find Full Text PDF

Introduction: Simple screening tools are critical for assessing Alzheimer's disease (AD)-related pre-dementia changes. This study investigated longitudinal scores from the Quick Dementia Rating System (QDRS), a brief study partner-reported measure, in relation to baseline levels of the AD biomarker plasma pTau217 in individuals unimpaired at baseline.

Methods: Data from the Wisconsin Registry for Alzheimer's Prevention (N = 639) were used to examine whether baseline plasma pTau217 (ALZpath assay on Quanterix platform) modified QDRS or Preclinical Alzheimer's Cognitive Composite (PACC3) trajectories (mixed-effects models; time = age).

View Article and Find Full Text PDF

This review covers recent advances (2023-2024) in neuroimaging research into the pathophysiology, progression, and treatment of Alzheimer's disease (AD) and related dementias (ADRD). Despite the rapid emergence of blood-based biomarkers, neuroimaging continues to be a vital area of research in ADRD. Here, we discuss neuroimaging as a powerful tool to topographically visualize and quantify amyloid, tau, neurodegeneration, inflammation, and vascular disease in the brain.

View Article and Find Full Text PDF

Hyperphosphorylation of Tau and the ensuing microtubule destabilization are linked to synaptic dysfunction in Alzheimer's disease (AD). We find a marked increase of phosphorylated Tau (pTau) in cortical neurons differentiated from induced pluripotent stem cells (iPSCs) of AD patients. It is accompanied by significantly elevated expression of Serum and Glucocorticoid-regulated Kinase-1 (SGK1), which is induced by cellular stress, and Histone Deacetylase 6 (HDAC6), which deacetylates tubulin to destabilize microtubules.

View Article and Find Full Text PDF

Blood-based biomarkers (BBMs) have emerged as promising tools to enhance Alzheimer's disease (AD) diagnosis. Despite two-thirds of dementia cases occurring in the Global South, research on BBMs has predominantly focused on populations from the Global North. This geographical disparity hinders our understanding of BBM performance in diverse populations.

View Article and Find Full Text PDF