98%
921
2 minutes
20
Current models of addiction biology highlight altered neural responses to non-drug rewards as a central feature of addiction. However, given that drugs of abuse can directly impact reward-related dopamine circuitry, it is difficult to determine the extent to which reward processing alterations are a trait feature of individuals with addictions, or primarily a consequence of exogenous drug exposure. Examining individuals with behavioral addictions is one promising approach for disentangling neural features of addiction from the direct effects of substance exposure. The current fMRI study compared neural responses during monetary reward processing between drug naïve young adults with a behavioral addiction, internet gaming disorder (IGD; n = 22), and healthy controls (n = 27) using a monetary incentive delay task. Relative to controls, individuals with IGD exhibited blunted caudate activity associated with loss magnitude at the outcome stage, but did not differ from controls in neural activity at other stages. These findings suggest that decreased loss sensitivity might be a critical feature of IGD, whereas alterations in gain processing may be less characteristic of individuals with IGD, relative to those with substance use disorders. Therefore, classic theories of altered reward processing in substance use disorders should be translated to behavioral addictions with caution.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013339 | PMC |
http://dx.doi.org/10.1016/j.nicl.2020.102202 | DOI Listing |
JAACAP Open
September 2025
Stanford University, Stanford, California.
Objective: To assess biological factors associated with anhedonia in depression and amotivation in cannabis use (PROSPERO: CRD42023422438).
Method: A systematic review was conducted of 8 electronic databases. Inclusion criteria included original research studies that investigated the association of biological factors or behavioral tasks with depression combined with concepts of anhedonia or cannabis combined with concepts of amotivation including apathy.
Brain Behav
September 2025
Centre For Cognitive and Clinical Neuroscience, College of Health, Medicine and Life Sciences, Brunel University of London, London, UK.
Introduction: There is an ongoing debate about the neural mechanisms and subjective preferences involved in the processing of social rewards compared to non-social reward types.
Methods: Using whole-brain functional magnetic resonance imaging (fMRI), we examined brain activation patterns during the anticipation and consumption phases of monetary and social rewards (using the Monetary and Social Incentive Delay Task-MSIDT, featuring human avatars) and their associations with self-reported social reward preferences measured by the Social Reward Questionnaire (SRQ) in 20 healthy right-handed individuals.
Results: In the anticipation phase, all reward types activated the dorsal striatum, middle cingulo-insular (salience) network, inferior frontal gyrus (IFG), and supplementary motor areas.
Neurosci Res
September 2025
Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Kyoto prefecture, Japan. Electronic address:
Decision-making often involves evaluating trade-offs between potential rewards and aversive outcomes, engaging both motivational drive and affective judgment. The ventral striatum (VS) and ventral pallidum (VP) are key regions in these processes. While the VS is associated with reward processing and incentive motivation, the VP encodes hedonic value and mediates motivated behaviors.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD 21224.
Learning when to initiate or withhold actions is essential for survival, requiring the integration of past experiences with new information to adapt to changing environments. The prelimbic cortex (PL) plays a central role in this process, with a stable PL neuronal population (ensemble) recruited during operant reward learning to encode response execution. However, it is unknown how this established reward-learning ensemble adapts to changing reward contingencies, such as reward omission during extinction.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Psychology, Technische Universität Dresden, Dresden, Germany.
Previous studies suggested that acute stress can impair flexible goal-directed action control in favor of habitual action control. In addition, there is evidence that acute stress differentially affects the processing of rewards and punishments. Therefore, we aimed at investigating whether acute stress affects the balance between goal-directed and habitual behavior not only for behavior aiming at reward but also for behavior motivated by avoiding punishments.
View Article and Find Full Text PDF