A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Electron-Transfer and Redox Reactivity of High-Valent Iron Imido and Oxo Complexes with the Formal Oxidation States of Five and Six. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We report for the first time electron-transfer (ET) properties of mononuclear nonheme iron-oxo and -imido complexes with the formal oxidation states of five and six, such as an iron(V)-imido TAML cation radical complex, which is formally an iron(VI)-imido complex [Fe(NTs)(TAML)] (; NTs = tosylimido), an iron(V)-imido complex [Fe(NTs)(TAML)] (), and an iron(V)-oxo complex [Fe(O)(TAML)] (). The one-electron reduction potential ( vs SCE) of was determined to be 0.86 V, which is much more positive than that of (0.30 V), but the of is the most positive (1.04 V). The rate constants of ET of - were analyzed in light of the Marcus theory of adiabatic outer-sphere ET to determine the reorganization energies (λ) of ET reactions with -; the λ of (1.00 eV) is significantly smaller than those of (1.98 eV) and (2.25 eV) because of the ligand-centered ET reduction of as compared to the metal-centered ET reduction of and . In oxidation reactions, reactivities of - toward the nitrene transfer (NT) and oxygen atom transfer (OAT) to thioanisole and its derivatives and the C-H bond activation reactions, such as the hydrogen atom transfer (HAT) of 1,4-cyclohexadiene, were compared experimentally. The differences in the redox reactivity of - depending on the reaction types, such as NT and OAT versus HAT, were interpreted by performing density functional theory calculations, showing that the ligand-centered reduction seen on ET reactions can switch to metal-centered reduction in NT and HAT.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.9b11682DOI Listing

Publication Analysis

Top Keywords

redox reactivity
8
complexes formal
8
formal oxidation
8
oxidation states
8
complex [fentstaml]
8
ligand-centered reduction
8
metal-centered reduction
8
atom transfer
8
reduction
5
electron-transfer redox
4

Similar Publications