98%
921
2 minutes
20
Coupled dynamical systems in ecology are known to respond to the seasonal forcing of their parameters with multiple dynamical behaviours, ranging from seasonal cycles to chaos. Seasonal forcing is predominantly modelled as a sine wave. However, the transition between seasons is often more sudden as illustrated by the effect of snow cover on predation success. A handful of studies have mentioned the robustness of their results to the shape of the forcing signal but did not report any detailed analyses. Therefore, whether and how the shape of seasonal forcing could affect the dynamics of coupled dynamical systems remains unclear, while abrupt seasonal transitions are widespread in ecological systems. To provide some answers, we conduct a numerical analysis of the dynamical response of predator-prey communities to the shape of the forcing signal by exploring the joint effect of two features of seasonal forcing: the magnitude of the signal, which is classically the only one studied, and the shape of the signal, abrupt or sinusoidal. We consider both linear and saturating functional responses, and focus on seasonal forcing of the predator's discovery rate, which fluctuates with changing environmental conditions and prey's ability to escape predation. Our numerical results highlight that a more abrupt seasonal forcing mostly alters the magnitude of population fluctuations and triggers period-doubling bifurcations, as well as the emergence of chaos, at lower forcing strength than for sine waves. Controlling the variance of the forcing signal mitigates this trend but does not fully suppress it, which suggests that the variance is not the only feature of the shape of seasonal forcing that acts on community dynamics. Although theoretical studies may predict correctly the sequence of bifurcations using sine waves as a representation of seasonality, there is a rationale for applied studies to implement as realistic seasonal forcing as possible to make precise predictions of community dynamics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtbi.2020.110175 | DOI Listing |
J Investig Allergol Clin Immunol
September 2025
Department of Ophthalmology, Juntendo University Graduate School of Medicine, Tokyo, Japan.
Background And Objectives: Pollen-food allergy syndrome (PFAS) is a frequent comorbidity in individuals with hay fever. Identifying risk factors and allergen clusters can aid targeted interventions and management strategies. Objective: This study characterizes PFAS in patients with hay fever and identifies associated risk factors using the mobile health platform, AllerSearch.
View Article and Find Full Text PDFFront Sports Act Living
August 2025
Sport Training Laboratory, University of Castilla-La Mancha, Toledo, Spain.
Introduction: This study examined the beliefs and practices of Spanish national swimming coaches regarding season planning, aiming to gain a deeper understanding of how they organize training throughout the year.
Methods: A total of 18 coaches participated and were classified based on the performance level of their swimmers: World Class (27.8%), Elite (11.
Mar Environ Res
September 2025
Department of Earth Sciences, National Taiwan Normal University, Taipei, Taiwan.
The northern South China Sea (SCS) shelf and southern Taiwan Strait (TS) are dynamic marginal seas influenced by both freshwater discharge from the Pearl River and seasonal coastal upwelling. These interacting hydrological forces shape ecological gradients that affect marine planktonic communities. Planktonic foraminiferal assemblages were analyzed from plankton tow and surface sediment samples collected during three cruises (2018, 2020, and 2022) along a ∼1000 km transect extending from the Pearl River estuary to the southern TS.
View Article and Find Full Text PDFThe evolutionary dynamics of seasonal influenza A viruses (IAVs) have been well characterized at the population level, with antigenic drift known to be a major force in driving strain turnover. The evolution of IAV populations at the within-host level, however, is still less well characterized. Improving our understanding of within-host IAV evolution has the potential to shed light on the source of new strains, including new antigenic variants, at the population level.
View Article and Find Full Text PDFFamily breakup dynamics in mammals can be complex due to competing interests between parents and offspring. Parents need to balance their own as well as their offspring's fitness through either terminating care early or extending care. Yet, males can disrupt this trade-off as they may force females to focus on future litters by separating or killing offspring, especially in species where sexually selected infanticide occurs.
View Article and Find Full Text PDF