98%
921
2 minutes
20
Background: Virulence genes and the expression of resistance mechanisms undoubtedly play a role in the successful spread of the pandemic clone Escherichia coli ST131. Porin down-regulation is a chromosomal mechanism associated with antibiotic resistance. Translation of porin proteins can be impacted by modifications in mRNA half-life and the interaction among small RNAs (sRNAs), the porin transcript and the sRNA chaperone Hfq. Modifications in the translatability of porin proteins could impact the fitness and therefore the success of E. coli ST131 isolates in the presence of antibiotic.
Objectives: To identify differences in the translatability of OmpC and OmpF porins for different STs of E. coli by comparing steady-state RNA levels, mRNA half-life, regulatory sRNA expression and protein production.
Methods: RNA expression was evaluated using real-time RT-PCR and OmpC mRNA half-life by northern blotting. OmpC, OmpF and Hfq protein levels were evaluated by immunoblotting.
Results: Differences between ST131 and non-ST131 isolates included: (i) the level of OmpC RNA and protein produced with mRNA expression higher for ST131 but OmpC protein levels lower compared with non-ST131 isolates; (ii) OmpC mRNA half-life (21-30 min for ST131 isolates compared with <2-23 min for non-ST131 isolates); and (iii) levels of the sRNA MicC (2- to 120-fold for ST131 isolates compared with -4- to 70-fold for non-ST131 isolates).
Conclusions: Mechanisms involved in the translatability of porin proteins differed among different STs of E. coli. These differences could provide a selective advantage to ST131 E. coli when confronted with an antibiotic-rich environment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7177473 | PMC |
http://dx.doi.org/10.1093/jac/dkz566 | DOI Listing |
Biosci Biotechnol Biochem
September 2025
Department of Nutrition, Graduate School of Human Life and Ecology, Osaka Metropolitan University, Osaka 558-8585, Japan.
Glucagon dysregulation is a hallmark of type 2 diabetes mellitus (T2DM), yet its early hepatic effects remain unclear. Here, we demonstrate that glucagon-induced gluconeogenesis is markedly enhanced in primary hepatocytes from prediabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats, a well-established model of human T2DM. Compared to control LETO rats, OLETF hepatocytes showed significantly higher glucagon-stimulated expression of gluconeogenic genes (Pepck, G6pase, Fbp1) at both mRNA and protein levels, along with elevated glucose production.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
September 2025
Versiti Blood Research Institute, Milwaukee, WI 53226, USA.
Plasminogen activator inhibitor-1 (PAI-1) deficiency is a rare disorder that causes moderate to severe bleeding and cardiac fibrosis, caused by mutation in the gene and no detectable circulating PAI-1 protein. There are currently no therapies that can effectively replace PAI-1 because the protein has a short half-life. An alternative approach to using recombinant protein is to endogenously increase circulating PAI-1 levels using mRNA therapy.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea. Electronic address:
Bromuconazole, a widely used triazole-based pesticide, effectively controls fungal diseases in agriculture. Bromuconazole cause a potential toxic effect to non-target organisms and can have a negative impact on reproductive health in women, due to its long half-life and bioaccumulation ability. This study identifies the cytotoxicity and adverse effects of bromuconazole on trophoblastic cells (HTR-8/SVneo) and human endometrial cells (T HESCs), which are involved in implantation processes.
View Article and Find Full Text PDFFront Immunol
September 2025
Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, United States.
Introduction: CCR2, a chemokine receptor critical for immune cell migration, inflammation, and HIV infection, is regulated by poorly understood mechanisms.
Methods: This study investigated the unusually long CCR2 3'-UTR's role in post-transcriptional regulation.
Results: The full-length 3'-UTR significantly inhibited reporter gene expression in primary CD4+ T cells and macrophages, likely mediated by RNA binding proteins (RBPs).
ACS Chem Neurosci
September 2025
Department of Neurosurgery, The Affiliated Hospital, Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, P.R. China.
Brain-derived neurotrophic factor (BDNF) plays an important role in synaptic development and plasticity. It is a promising therapeutic target for improving neurofunctional outcomes after traumatic brain injury (TBI). However, the delivery of BDNF faces several significant challenges including limited entry into the CNS due to blood-brain barrier (BBB), short half-life, and potential side effects.
View Article and Find Full Text PDF