Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Nebulin is a critical thin filament-binding protein that spans from the Z-disk of the skeletal muscle sarcomere to near the pointed end of the thin filament. Its massive size and actin-binding property allows it to provide the thin filaments with structural and regulatory support. When this protein is lost, nemaline myopathy occurs. Nemaline myopathy causes severe muscle weakness as well as structural defects on a sarcomeric level. There is no known cure for this disease.

Methods: We studied whether sarcomeric structure and function can be improved by introducing nebulin's Z-disk region into a nebulin-deficient mouse model (Neb cKO) through adeno-associated viral (AAV) vector therapy. Following this treatment, the structural and functional characteristics of both vehicle-treated and AAV-treated Neb cKO and control muscles were studied.

Results: Intramuscular injection of this AAV construct resulted in a successful expression of the Z-disk fragment within the target muscles. This expression was significantly higher in Neb cKO mice than control mice. Analysis of protein expression revealed that the nebulin fragment was localized exclusively to the Z-disks and that Neb cKO expressed the nebulin fragment at levels comparable to the level of full-length nebulin in control mice. Additionally, the Z-disk fragment displaced full-length nebulin in control mice, resulting in nemaline rod body formation and a worsening of muscle function. Neb cKO mice experienced a slight functional benefit from the AAV treatment, with a small increase in force and fatigue resistance. Disease progression was also slowed as indicated by improved muscle structure and myosin isoform expression.

Conclusions: This study reveals that nebulin fragments are well-received by nebulin-deficient mouse muscles and that limited functional benefits are achievable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6986074PMC
http://dx.doi.org/10.1186/s13395-019-0219-9DOI Listing

Publication Analysis

Top Keywords

neb cko
20
nebulin fragment
12
nebulin-deficient mouse
12
control mice
12
muscle structure
8
structure function
8
nemaline myopathy
8
z-disk fragment
8
cko mice
8
full-length nebulin
8

Similar Publications

Background: Nebulin is a critical thin filament-binding protein that spans from the Z-disk of the skeletal muscle sarcomere to near the pointed end of the thin filament. Its massive size and actin-binding property allows it to provide the thin filaments with structural and regulatory support. When this protein is lost, nemaline myopathy occurs.

View Article and Find Full Text PDF

Nemaline myopathy (NEM) is a congenital neuromuscular disorder primarily caused by nebulin gene (NEB) mutations. NEM is characterized by muscle weakness for which currently no treatments exist. In NEM patients a predominance of type I fibers has been found.

View Article and Find Full Text PDF

Respiratory failure due to diaphragm dysfunction is considered a main cause of death in nemaline myopathy (NM) and we studied both isometric force and isotonic shortening of diaphragm muscle in a mouse model of nebulin-based NM (Neb cKO). A large contractile deficit was found in nebulin-deficient intact muscle that is frequency dependent, with the largest deficits at low-intermediate stimulation frequencies (e.g.

View Article and Find Full Text PDF

Mutations in at least 12 genes are responsible for a group of congenital skeletal muscle diseases known as nemaline myopathies (NMs). NMs are associated with a range of clinical symptoms and pathological changes often including the presence of cytoplasmic rod-like structures (nemaline bodies) and myofiber hypotrophy. Our recent work has identified a variable degree of behavioral benefit when treating 2 NM mouse models due to mutations in Acta1 with myostatin inhibition.

View Article and Find Full Text PDF

Nebulin is a giant sarcomeric protein that spans along the actin filament in skeletal muscle, from the Z-disk to near the thin filament pointed end. Mutations in nebulin cause muscle weakness in nemaline myopathy patients, suggesting that nebulin plays important roles in force generation, yet little is known about nebulin's influence on thin filament structure and function. Here, we used small-angle X-ray diffraction and compared intact muscle deficient in nebulin (using a conditional nebulin-knockout, Neb cKO) with control (Ctrl) muscle.

View Article and Find Full Text PDF