A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Nanoscale Mapping of the Double Layer Potential at the Graphene-Electrolyte Interface. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The electrical double layer (EDL) governs the operation of multiple electrochemical devices, determines reaction potentials, and conditions ion transport through cellular membranes in living organisms. The few existing methods of EDL probing have low spatial resolution, usually only providing spatially averaged information. On the other hand, traditional Kelvin probe force microscopy (KPFM) is capable of mapping potential with nanoscale lateral resolution but cannot be used in electrolytes with concentrations higher than several mmol/L. Here, we resolve this experimental impediment by combining KPFM with graphene-capped electrolytic cells to quantitatively measure the potential drop across the EDL in aqueous electrolytes of decimolar and molar concentrations with a high lateral resolution. The surface potential of graphene in contact with deionized water and 0.1 mol/L solutions of CuSO and MgSO as a function of counter electrode voltage is reported. The measurements are supported by numerical modeling to reveal the role of the graphene membrane in potential screening and to determine the EDL potential drop. The proposed approach proves to be especially useful for imaging spatially inhomogeneous systems, such as nanoparticles submerged in an electrolyte solution. It could be suitable for in operando and in vivo measurements of the potential drop in the EDL on the surfaces of nanocatalysts and biological cells in equilibrium with liquid solutions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.9b04823DOI Listing

Publication Analysis

Top Keywords

potential drop
12
double layer
8
lateral resolution
8
drop edl
8
potential
7
edl
5
nanoscale mapping
4
mapping double
4
layer potential
4
potential graphene-electrolyte
4

Similar Publications