A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Structural Determinants Mediating Tertiapin Block of Neuronal Kir3.2 Channels. | LitMetric

Structural Determinants Mediating Tertiapin Block of Neuronal Kir3.2 Channels.

Biochemistry

Department of Molecular Pharmacology & Physiology , University of South Florida College of Medicine, 12901 Bruce B. Downs Boulevard , Tampa , Florida 33612 , United States.

Published: February 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tertiapin (TPN) is a 21 amino acid venom peptide from that inhibits certain members of the inward rectifier potassium (Kir) channel family at a nanomolar affinity with limited specificity. Structure-based computational simulations predict that TPN behaves as a pore blocker; however, the molecular determinants mediating block of neuronal Kir3 channels have been inconclusive and unvalidated. Here, using molecular docking and molecular dynamics (MD) simulations with 'potential of mean force' (PMF) calculations, we investigated the energetically most favored interaction of TPN with several Kir3.x channel structures. The resulting binding model for Kir3.2-TPN complexes was then tested by targeted mutagenesis of the predicted contact sites, and their impact on the functional channel block was measured electrophysiologically. Together, our findings indicate that a high-affinity TPN block of Kir3.2 channels involves a pore-inserting lysine side chain requiring (1) hydrophobic interactions at a phenylalanine ring surrounding the channel pore and (2) electrostatic interactions with two adjacent Kir3.2 turret regions. Together, these interactions collectively stabilize high-affinity toxin binding to the Kir3.2 outer vestibule, which orients the ε-amino group of TPN-K21 to occupy the outermost K binding site of the selectivity filter. The structural determinants for the TPN block described here also revealed a favored subunit arrangement for assembled Kir3.x heteromeric channels, in addition to a multimodal binding capacity of TPN variants consistent with the functional dyad model for polybasic peptide pore blockers. These novel findings will aid efforts in re-engineering the TPN pharmacophore to develop peptide variants having unique and distinct Kir channel blocking properties.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7524040PMC
http://dx.doi.org/10.1021/acs.biochem.9b01098DOI Listing

Publication Analysis

Top Keywords

structural determinants
8
determinants mediating
8
block neuronal
8
kir32 channels
8
kir channel
8
tpn block
8
tpn
7
block
5
channel
5
mediating tertiapin
4

Similar Publications