A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Pharmacological characterization of a rat Nav1.7 loss-of-function model with insensitivity to pain. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sodium channel Nav1.7, encoded by the SCN9A gene, is a well-validated target that plays a key role in controlling pain sensation. Loss-of-function mutations of Nav1.7 can cause a syndrome of profound congenital insensitivity to pain in humans. Better understanding of how the loss of Nav1.7 leads to loss of pain sensibility would help to decipher the fundamental mechanisms of nociception and inform strategies for development of novel analgesics. Using a recently described rat Nav1.7 loss-of-function model with deficient nociception but intact olfactory function, we investigated the involvement of endogenous opioid and cannabinoid systems in this rodent model of Nav1.7-related congenital insensitivity to pain. We found that both the opioid receptor antagonist naloxone and cannabinoid receptor blockers SR141716A (rimonabant) and SR144528 fail to restore acute pain sensitivity in Nav1.7 loss-of-function rats. We observed, however, that after rimonabant administration, Nav1.7 loss-of-function but not WT rats displayed abnormal behaviours, such as enhanced scratching, caudal self-biting, and altered facial expressions; the underlying mechanism is still unclear. Dorsal root ganglion neurons from Nav1.7 loss-of-function rats, although hypoexcitable compared with WT neurons, were still able to generate action potentials in response to noxious heat and capsaicin. Our data indicate that complete loss of dorsal root ganglion neuron excitability is not required for insensitivity to pain and suggest that endogenous opioid and cannabinoid systems are not required for insensitivity to pain in the absence of Nav1.7 channels in this rat Nav1.7 loss-of-function model.

Download full-text PDF

Source
http://dx.doi.org/10.1097/j.pain.0000000000001807DOI Listing

Publication Analysis

Top Keywords

nav17 loss-of-function
24
insensitivity pain
20
rat nav17
12
loss-of-function model
12
loss-of-function rats
12
nav17
10
pain
8
congenital insensitivity
8
endogenous opioid
8
opioid cannabinoid
8

Similar Publications