A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Excess palmitate induces decidual stromal cell apoptosis via the TLR4/JNK/NF-kB pathways and possibly through glutamine oxidation. | LitMetric

Excess palmitate induces decidual stromal cell apoptosis via the TLR4/JNK/NF-kB pathways and possibly through glutamine oxidation.

Mol Hum Reprod

Laboratory for Reproductive Immunology, National Health Commission (NHC) Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200082, People's Republic of China.

Published: February 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

During gestation, excess palmitate (PA) is enriched in decidua. Both excess PA and decidual dysfunctions are associated with numerous adverse pregnancy outcomes such as gestational diabetes, preeclampsia and preterm birth and intrauterine growth restriction. Here, mRNA data about the effects of PA were collected from multiple databases and analyzed. Human decidual tissues were obtained from clinically normal pregnancies, terminated for non-medical reasons, during the first trimester, and decidual stromal cells (DSCs) were isolated and exposed to PA, alone or together with the inhibitors of Toll-like receptor 4 (TLR4), Jun N-terminal kinase (JNK), nuclear factor-kappa-gene binding (NF-kB) or glutamine (GLN) oxidation. Furthermore, DSCs were transfected with lentiviral particles overexpressing human TLR4. We demonstrate that excess PA interacting with its receptor TLR4 disturbs DSC hemostasis during the first trimester. Specifically, high PA signal induced DSC apoptosis and formed an inflammatory program (elevated interleukin-1 beta and decreased interleukin-10) via the activation of TLR4/JNK/NF-kB pathways. A complexed cross-talk was found between TLR4/JNK/NF-kB signals and PA deposition in DSCs. Besides, under an excess PA environment, GLN oxidation was significantly enhanced in DSCs and the suppression of GLN oxidation further augmented PA-mediated DSC apoptosis and inflammatory responses. In conclusion, excess PA induces apoptosis and inflammation in DSCs via the TLR4/JNK/NF-kB pathways, which can be augmented by the suppression of GLN oxidation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/molehr/gaaa004DOI Listing

Publication Analysis

Top Keywords

gln oxidation
16
tlr4/jnk/nf-kb pathways
12
excess palmitate
8
decidual stromal
8
receptor tlr4
8
dsc apoptosis
8
suppression gln
8
excess
6
oxidation
5
dscs
5

Similar Publications