Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Carbon-based compounds are widespread throughout the Universe, including abiotic molecules that are the components of the life as we know it. This article reviews the space missions that have aimed to detect organic matter and biosignatures in planetary bodies of our solar system. While to date there was only one life-detection space mission, i.e., the Viking mission to Mars, several past and present space missions have searched for organic matter, paving the way for the future detection of signatures of extra-terrestrial life. This review also reports on the in-situ analysis of organic matter and sample-return missions from primitive bodies, i.e. comets and asteroids, providing crucial information on the conditions of the early solar system as well as on the building blocks of life delivered to the primitive Earth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.21775/cimb.038.053 | DOI Listing |