A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

A single-pulsed electromagnetic field enhances collagen synthesis in tendon cells. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tendinopathy is a progressive pathology of tendon that is characteristic of imbalance between matrix synthesis and degeneration and is often caused by failure to adapt to mechanical loading. Non-steroidal anti-inflammatory medications (NSAIDS) are used as a conventional treatment to alleviate pain and swelling in the short term, but the ideal treatment for tendinopathy remains unclear. Here, we show a single pulsed electromagnetic field (SPEMF, 0.2 Hz) that up-regulated tenogenic gene expression (Col1a1, Col3a1, Scx, Dcn) and down-regulated inflammatory gene expression (Mmp1) in vitro. After five days of SPEMF stimulation (3 min/day), the collagen type I and total collagen synthesis protein levels were significantly increased. Under pro-inflammatory cytokine (IL-1β) irritation, the decreased expression of Col1a1/Col3a1 was up-regulated by SPEMF treatment, and the increased expression of Mmp1 was also reversed. From the above, it can be inferred that SPEMF that enhances matrix synthesis and reduces matrix degeneration may counteract the imbalance in tendinopathy. SPEMF application may be developed as a potential future strategy for therapeutic intervention in tendon disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2019.12.001DOI Listing

Publication Analysis

Top Keywords

electromagnetic field
8
collagen synthesis
8
matrix synthesis
8
gene expression
8
expression mmp1
8
spemf
5
single-pulsed electromagnetic
4
field enhances
4
enhances collagen
4
synthesis
4

Similar Publications