Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Conducting polymer (CP) actuators are promising devices for biomedical applications such as artificial muscles and drug delivery systems. Here, we report a tri-layer actuator based on poly(pyrrole) (PPy) microtubes (PPy MTs) doped with poly(sodium-p-styrenesulfonate) (PSS) and constructed on a passive layer of gold-coated poly-propylene (PP) film. The PPy MTs were fabricated using electrochemical deposition of PPy around poly(lactic-co-glycolic acid) (PLGA) fiber templates, followed by template removal. The PPy MTs were subjected to a redox process using cyclic voltammetry in 0.1 M NaPSS electrolyte solution as the potential was swept between -0.8 V and +0.4 V for 5 cycles at the scan rates of 10, 50, 100, and 200 mV/s. The bending behavior of the PPy MTs actuator was investigated by measuring the deflection of actuator tip resulting from the expansion/contraction strain of PPy MTs. The PPy MTs actuator showed a reversible bending movement during each potential cycle. The maximum deflection of actuator decreased by increasing the scan rate that was confirmed by calculating the actuation strain generated during each cycle at various scan rates.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2019.8857050 | DOI Listing |