Comparative Pathology of West Nile Virus in Humans and Non-Human Animals.

Pathogens

Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.

Published: January 2020


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

West Nile virus (WNV) continues to be a major cause of human arboviral neuroinvasive disease. Susceptible non-human vertebrates are particularly diverse, ranging from commonly affected birds and horses to less commonly affected species such as alligators. This review summarizes the pathology caused by West Nile virus during natural infections of humans and non-human animals. While the most well-known findings in human infection involve the central nervous system, WNV can also cause significant lesions in the heart, kidneys and eyes. Time has also revealed chronic neurologic sequelae related to prior human WNV infection. Similarly, neurologic disease is a prominent manifestation of WNV infection in most non-human non-host animals. However, in some avian species, which serve as the vertebrate host for WNV maintenance in nature, severe systemic disease can occur, with neurologic, cardiac, intestinal and renal injury leading to death. The pathology seen in experimental animal models of West Nile virus infection and knowledge gains on viral pathogenesis derived from these animal models are also briefly discussed. A gap in the current literature exists regarding the relationship between the neurotropic nature of WNV in vertebrates, virus propagation and transmission in nature. This and other knowledge gaps, and future directions for research into WNV pathology, are addressed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168622PMC
http://dx.doi.org/10.3390/pathogens9010048DOI Listing

Publication Analysis

Top Keywords

west nile
16
nile virus
16
humans non-human
8
non-human animals
8
wnv infection
8
animal models
8
wnv
7
virus
5
comparative pathology
4
west
4

Similar Publications

Development of a reverse genetics system for West Nile virus (Kunjin type).

Front Vet Sci

August 2025

Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, Sichuan, China.

Kunjin virus (KUNV), a naturally attenuated strain of West Nile virus (WNV), shares similar transmission modes and hosts-primarily mosquitoes, birds, and horses. Globally, reverse genetics is the principal methodology for characterizing the molecular etiology of flaviviruses. In this study, cytomegalovirus (CMV) promoter-driven KUNV reporter replicons were engineered to incorporate three distinct reporter genes: Nanoluc, oxGFP, and mCherry.

View Article and Find Full Text PDF

Objectives: To characterise the chorioretinal (CR) manifestations of West Nile virus (WNV) infection using multimodal imaging (MMI).

Methods: Retrospective cohort study including 37 patients with confirmed WNV infection hospitalised at a single centre (July-September 2024). All underwent comprehensive ophthalmological evaluations, including visual acuity, slit-lamp biomicroscopy, fundoscopy, and multimodal imaging: fundus photography, spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF), fluorescein angiography, and indocyanine green angiography when clinically indicated.

View Article and Find Full Text PDF

Vertebrate animals and many small DNA and single-stranded RNA viruses that infect vertebrates have evolved to suppress genomic CpG dinucleotides. All organisms and most viruses additionally suppress UpA dinucleotides in protein-coding RNA. Synonymously recoding viral genomes to introduce CpG or UpA dinucleotides has emerged as an approach for viral attenuation and vaccine development.

View Article and Find Full Text PDF

Introduction: Climate variability and non-environmental factors such as travel and migration pose an increasing risk of vector-borne infectious diseases to extratropical regions. The European Centre for Disease Prevention and Control has reported autochthonous transmissions of dengue or West Nile virus in Italy, France, Spain, and Germany. Raising awareness and implementing protective measures against mosquitoes will therefore become increasingly relevant in Germany in the future.

View Article and Find Full Text PDF

Escherichia coli O157:H7 is a significant foodborne pathogen with global public health implications. This study, conducted from December 2022 to July 2023 in Hawassa and Yirgalem, Sidama Region, Ethiopia, assessed the prevalence, molecular identification, and antimicrobial resistance of E. coli O157:H7 in animal-derived foods.

View Article and Find Full Text PDF