Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Generalized linear models are routinely used in many environment statistics problems such as earthquake magnitudes prediction. Hu et al. proposed Pareto regression with spatial random effects for earthquake magnitudes. In this paper, we propose Bayesian spatial variable selection for Pareto regression based on Bradley et al. and Hu et al. to tackle variable selection issue in generalized linear regression models with spatial random effects. A Bayesian hierarchical latent multivariate log gamma model framework is applied to account for spatial random effects to capture spatial dependence. We use two Bayesian model assessment criteria for variable selection including Conditional Predictive Ordinate (CPO) and Deviance Information Criterion (DIC). Furthermore, we show that these two Bayesian criteria have analytic connections with conditional AIC under the linear mixed model setting. We examine empirical performance of the proposed method via a simulation study and further demonstrate the applicability of the proposed method in an analysis of the earthquake data obtained from the United States Geological Survey (USGS).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6953754PMC
http://dx.doi.org/10.3390/geosciences9040169DOI Listing

Publication Analysis

Top Keywords

variable selection
16
pareto regression
12
earthquake magnitudes
12
spatial random
12
random effects
12
selection pareto
8
regression models
8
latent multivariate
8
multivariate log
8
log gamma
8

Similar Publications

Purpose: To evaluate inter-grader variability in posterior vitreous detachment (PVD) classification in patients with epiretinal membrane (ERM) and macular hole (MH) on spectral-domain optical coherence tomography (SD-OCT) and identify challenges in defining a reliable ground truth for artificial intelligence (AI)-based tools.

Methods: A total of 437 horizontal SD-OCT B-scans were retrospectively selected and independently annotated by six experienced ophthalmologists adopting four categories: 'full PVD', 'partial PVD', 'no PVD', and 'ungradable'. Inter-grader agreement was assessed using pairwise Cohen's kappa scores.

View Article and Find Full Text PDF

BackgroundGlaucoma is recognized as the second-leading cause of complete blindness in developed countries and a significant contributor to irreversible vision loss worldwide. Understanding the potential genetic links between neurodegenerative diseases, such as Parkinson's disease, and glaucoma is crucial for developing preventive strategies.MethodsThis study utilized data from Genome-Wide Association Studies databases, focusing on European populations without gender restrictions.

View Article and Find Full Text PDF

Wrist biomechanics remain incompletely understood due to the complexity of experimental measurements in this multi-bone joint system. Finite element analysis provides a powerful alternative for investigating internal variables such as carpal kinematics and displacement patterns. This technical brief compares two bone representation approaches, all-cortical versus cortical-trabecular, using two distinct finite element models developed from the same wrist CT dataset.

View Article and Find Full Text PDF

Biomolecular dynamics in the microsecond-to-millisecond (µs-ms) timescale are linked to various biological functions, such as enzyme catalysis, allosteric regulation, and ligand recognition. In solution state NMR, Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion experiments are commonly used to probe µs-ms timescale motions, providing detailed kinetic, thermodynamic, and mechanistic information at the atomic level. For investigating conformational dynamics in high-molecular-weight biomolecules, methyl groups serve as ideal probes due to their favorable relaxation properties, and C CPMG relaxation dispersion is widely employed for characterizing dynamics in selectively CH-labeled samples.

View Article and Find Full Text PDF

AI Model Based on Diaphragm Ultrasound to Improve the Predictive Performance of Invasive Mechanical Ventilation Weaning: Prospective Cohort Study.

JMIR Form Res

September 2025

Department of Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Geriatrics Institute, No. 106, Zhongshaner Rd, Guangzhou, 510080, China, 86 15920151904.

Background: Point-of-care ultrasonography has become a valuable tool for assessing diaphragmatic function in critically ill patients receiving invasive mechanical ventilation. However, conventional diaphragm ultrasound assessment remains highly operator-dependent and subjective. Previous research introduced automatic measurement of diaphragmatic excursion and velocity using 2D speckle-tracking technology.

View Article and Find Full Text PDF