Fibroblast-Derived 3D Matrix System Applicable to Endothelial Tube Formation Assay.

J Vis Exp

Medical Oncology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), CIBERONC;

Published: December 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The extracellular matrix (ECM) is a three-dimensional scaffold that acts as the main support for cells in tissues. Besides its structural function, the ECM also participates in cell migration, proliferation, and differentiation. Fibroblasts are the main type of cells modifying ECM fiber arrangement and production. In cancer, CAFs (cancer associated fibroblasts) are in permanent activation status, participating in ECM remodeling, facilitating tumor cell migration, and stimulating tumor-associated angiogenesis, among other pro-tumorigenic roles. The objective of this method is to create a three-dimensional matrix with a fiber composition that is similar to in vivo matrices, using immortalized fibroblasts or human primary CAFs. Fibroblasts are cultured in pre-treated cell culture plates and grown under ascorbic acid stimulation. Then, fibroblasts are removed and matrices are blocked for further cell seeding. In this ECM model, fibroblasts can be activated or modified to generate different kinds of matrix, whose effects can be studied in cell culture. 3D matrices are also shaped by cell signals, like degradation or cross-linking enzymes that might modify fiber distribution. In this context, angiogenesis can be studied, along with other cell types such as epithelial tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.3791/60304DOI Listing

Publication Analysis

Top Keywords

cell migration
8
cell culture
8
studied cell
8
cell
7
fibroblasts
6
ecm
5
fibroblast-derived matrix
4
matrix system
4
system applicable
4
applicable endothelial
4

Similar Publications

At present, flexible sensors are a hot spot in research and experimental development, but the research on flexible sensors that can be used for human motion monitoring still needs to be deepened. In this work, the green material cellulose acetate (CA) was used as the matrix material, the film was made by electrospinning, crushed by a cell grinder and sodium alginate (SA) was added to promote the uniform dispersion of nanofibers in water, and then methyltrimethoxysilane (MTMS) and MXene nanosheet dispersion were added to make it hydrophobic and good conductivity, and the aerogel precursor solution was prepared, and then the CA/SA/MTMS/MXene aerogel with directional holes was prepared by directional freeze-drying. As a flexible sensor material, it can be used for human wear, monitoring the electrical signals generated by the movement of human joints and other parts, and can still maintain a current of about 0.

View Article and Find Full Text PDF

Background: Standard treatment for glioblastoma includes chemotherapy, alkylating agents such as temozolomide (TMZ); however, MGMT resistance leads to recurrence. Demethoxycurcumin (DMC) has been reported to inhibit cancer cell growth, induce apoptosis, and prevent metastasis in different cancer models. We investigated the DMC-induced apoptosis and autophagy via inhibition of the AKT/mTOR pathway in human glioma U87MG and T98G cell lines.

View Article and Find Full Text PDF

Directional Biomimetic Scaffold-Mediated Cell Migration and Pathological Microenvironment Regulation Accelerate Diabetic Bone Defect Repair.

ACS Nano

September 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev

Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.

View Article and Find Full Text PDF

Unlabelled: Dendritic cells (DCs) are the primary inducers of immunity induced by infection or vaccination. To stimulate durable T cell-mediated immunity, multiple DC activities are required. DCs must present antigen, express costimulatory molecules, and secrete inflammatory cytokines to direct T cell activation.

View Article and Find Full Text PDF

Background: The factors contributing to a poor response to subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) are not yet fully understood. Accordingly, predicting the outcome might be challenging particularly in those who display an optimal response to the Levodopa challenge test.

Objective: To determine which factors may contribute to poor outcome of STN-DBS in PD.

View Article and Find Full Text PDF